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Where Are We?

Last week: Probability foundations

• Sample spaces, events, axioms
• Conditional probability, Bayes’ Rule
• Independence of events

Today: Random variables

• Moving from events to numbers
• PMFs, PDFs, CDFs
• Joint distributions and independence of random variables

Wednesday: Famous distributions (Bernoulli, Binomial, Normal, Poisson)

Random variables are how we actually do statistics.
Gov 2001 Scott Cunningham 2 / 37



Part I

Random Variables

Turning outcomes into numbers
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The Problem with Events

Events like “roll a six” or “candidate wins” are useful, but limited.

We want to work with numbers:

• What’s the average income in a population?
• How much does vote share vary across districts?
• What’s the expected number of protests per year?

To answer these questions, we need to convert outcomes into numbers.

That’s what random variables do.
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Random Variables
The intuition

Think of a random variable as a container or placeholder for a quantity that has yet
to be determined by a random process.

Example: “The number showing when I roll this die.”

• We don’t know what it will be yet
• We know what values it could take (1, 2, 3, 4, 5, 6)
• We know how likely each value is

The random variable gives us a way to talk about uncertain quantities before we observe
them.
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Random Variables
The formal definition

Mathematically, a random variable is a function from outcomes to numbers:

X : Ω → R

Example: Roll a die. Define X = “the number showing.”

• Sample space: Ω = {𝜔1, 𝜔2, 𝜔3, 𝜔4, 𝜔5, 𝜔6}
• Random variable: X (𝜔i) = i

Key insight: Despite the name, a random variable is neither random nor a
variable—it’s a function. The randomness comes from which 𝜔 nature selects.
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Random Variables
More examples

Flip two coins: Ω = {HH,HT , TH, TT }

• X = number of heads: X (HH) = 2, X (HT ) = X (TH) = 1, X (TT ) = 0

Survey a voter: Ω = {all possible voters}

• X = age of selected voter
• Y = 1 if Democrat, 0 otherwise
• Z = feeling thermometer toward Biden (0–100)

Key insight: Many random variables can be defined on the same sample space.

The sample space is about what happens. Random variables are about what we measure.
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Notation Convention

Capital letters for random variables: X , Y , Z

Lowercase letters for specific values: x , y , z

Example:

• “X” = the random variable (a function)
• “X = 3” = the event {𝜔 ∈ Ω : X (𝜔) = 3}
• “x = 3” = a specific number

We write:
P(X = x) or P(X ≤ x)

This is shorthand for “the probability of the event where X takes value x .”
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Two Types of Random Variables

Discrete: Takes on a finite or countably infinite set of values.

• Number of votes, count of protests, party ID (coded 1, 2, 3)
• We use probability mass functions (PMFs)

Continuous: Can take any value in an interval.

• Income, vote share, feeling thermometer
• We use probability density functions (PDFs)

The distinction matters for how we compute probabilities.
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Functions vs. Operators
A preview of what’s coming

Functions of random variables produce new random variables:

• If X is income, then Y = log(X ) is also a random variable
• g(X ) = X 2 transforms X into another uncertain quantity

Operators on random variables produce numbers:

• E[X ] (expected value)→ a single number
• Var(X ) (variance)→ a single number

We’ll spend next week on operators like E[·] and Var(·).
For now, just note the distinction: g(X ) is still random; E[X ] is not.
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Part II

Discrete Random Variables

Probability mass functions
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Probability Mass Function (PMF)
Definition

For a discrete random variable X , the PMF is:

fX (x) = P(X = x)

The PMF tells us the probability that X takes each possible value.

Properties:

1. fX (x) ≥ 0 for all x

2.
∑

x fX (x) = 1 (probabilities sum to 1)

The PMF completely describes the distribution of a discrete random variable.
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Example: Fair Die

Let X = result of rolling a fair die.

PMF:

fX (x) =
{
1
6 if x ∈ {1, 2, 3, 4, 5, 6}
0 otherwise

x

fX (x)

1 2 3 4 5 6

1
6
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Example: Number of Heads in Two Flips

Flip a fair coin twice. Let X = number of heads.

Sample space: {HH,HT , TH, TT }, each with probability 1
4 .

PMF:

• fX (0) = P(X = 0) = P({TT }) = 1
4

• fX (1) = P(X = 1) = P({HT , TH}) = 2
4 = 1

2
• fX (2) = P(X = 2) = P({HH}) = 1

4

Check: 1
4 +

1
2 +

1
4 = 1 ✓

This is a Binomial(2, 0.5) distribution—more on Wednesday.
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Computing Probabilities from PMFs

Once we have the PMF, we can compute any probability:

P(X ∈ A) =
∑︁
x∈A

fX (x)

Example: For a fair die, what’s P(X ≤ 3)?

P(X ≤ 3) = fX (1) + fX (2) + fX (3) =
1
6
+ 1
6
+ 1
6
=
1
2

Example: What’s P(X is even)?

P(X ∈ {2, 4, 6}) = fX (2) + fX (4) + fX (6) =
3
6
=
1
2
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Part III

Continuous Random Variables

Probability density functions
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The Problem with Continuous Variables

For continuous random variables, P(X = x) = 0 for any specific x .

Why? Uncountably many possible values. If each had positive probability, they’d sum to
more than 1.

Example: What’s the probability someone’s height is exactly 5.7832941... feet?

Zero. But we can ask: What’s the probability their height is between 5.5 and 6 feet?

For continuous variables, we only assign probabilities to intervals.
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Probability Density Function (PDF)
Definition

For a continuous random variable X , the PDF fX (x) satisfies:

P(a ≤ X ≤ b) =
∫ b

a
fX (x) dx

Properties:

1. fX (x) ≥ 0 for all x

2.
∫ ∞
−∞ fX (x) dx = 1

Key insight: The PDF is not a probability. It’s a density.

Probabilities are areas under the curve.
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PDF Intuition

x

fX (x)

a b

P(a ≤ X ≤ b)

The shaded area equals P(a ≤ X ≤ b).

The total area under the curve equals 1.
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Example: Uniform Distribution

X ∼ Uniform(0, 1) means X is equally likely to be anywhere in [0, 1].

PDF:

fX (x) =
{
1 if 0 ≤ x ≤ 1

0 otherwise

Example: What’s P(0.3 ≤ X ≤ 0.7)?

P(0.3 ≤ X ≤ 0.7) =
∫ 0.7

0.3
1 dx = 0.7 − 0.3 = 0.4

For the uniform distribution, probability = length of interval.
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Part IV

Cumulative Distribution Function

A unifying concept
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Cumulative Distribution Function (CDF)
Definition

The CDF of a random variable X is:

FX (x) = P(X ≤ x)

Properties:

1. FX (x) is non-decreasing
2. limx→−∞ FX (x) = 0

3. limx→∞ FX (x) = 1

4. P(a < X ≤ b) = FX (b) − FX (a)

Every random variable has a CDF. It’s the universal language.
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CDF for Discrete Variables

For a fair die: FX (x) =
∑

k≤x fX (k) =
∑

k≤x
1
6

x

FX (x)

1 2 3 4 5 6

1

The CDF is a step function for discrete random variables.

Gov 2001 Scott Cunningham 23 / 37



CDF for Continuous Variables

For continuous X with PDF fX (x):

FX (x) =
∫ x

−∞
fX (t) dt

And conversely: fX (x) = d
dx FX (x)

Example: For X ∼ Uniform(0, 1):

FX (x) =

0 if x < 0

x if 0 ≤ x ≤ 1

1 if x > 1
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Why the CDF Matters

The CDF is the universal way to describe any distribution.

• Every random variable has a CDF
• Not every random variable has a PMF (continuous ones don’t)
• Not every random variable has a PDF (discrete ones don’t)

Quantiles come from the CDF:

• Median: F −1
X (0.5) — the value where half the probability is below

• 95th percentile: F −1
X (0.95)

Statistical software uses CDFs constantly: pnorm(), qnorm(), etc.
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Part V

Joint Distributions

Multiple random variables together
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Joint Distributions
Why we need them

In practice, we care about relationships between variables:

• How does education relate to income?
• How does campaign spending relate to vote share?
• Are two variables independent?

To answer these, we need to describe two or more random variables together.

This is the joint distribution.
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Joint PMF
For discrete random variables

For discrete random variables X and Y , the joint PMF is:

fX ,Y (x, y) = P(X = x and Y = y)

Properties:

1. fX ,Y (x, y) ≥ 0 for all x, y

2.
∑

x
∑

y fX ,Y (x, y) = 1

The joint PMF is often displayed as a table.
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Example: Joint PMF

Roll two dice. Let X = first die, Y = second die.

Since the dice are independent, fX ,Y (x, y) = 1
36 for all pairs.

More interesting: Let X = first die, S = sum of both dice.

X = 1 X = 2 X = 3 X = 4 X = 5 X = 6

S = 2 1
36 0 0 0 0 0

S = 3 1
36

1
36 0 0 0 0

S = 4 1
36

1
36

1
36 0 0 0

...
...

...
...

...
...

...

X and S are not independent—knowing X tells you something about S.
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Marginal Distributions
Recovering individual distributions

Given a joint PMF, we can recover themarginal PMF of each variable:

fX (x) =
∑︁
y

fX ,Y (x, y)

fY (y) =
∑︁
x

fX ,Y (x, y)

Intuition: Sum over all possible values of the other variable.

“Marginalize out” the variable you don’t care about.
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Example: Computing Marginals

Joint distribution of X (party) and Y (vote):

Y = 0 (No) Y = 1 (Yes) fX (x)
X = 0 (Rep) 0.30 0.15 0.45
X = 1 (Dem) 0.10 0.45 0.55

fY (y) 0.40 0.60 1.00

Marginal of X : fX (0) = 0.30 + 0.15 = 0.45

Marginal of Y : fY (1) = 0.15 + 0.45 = 0.60

The marginals are the row and column sums.
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Conditional Distributions
Distributions given information

The conditional PMF of Y given X = x is:

fY |X (y |x) =
fX ,Y (x, y)
fX (x)

From our example: What’s the distribution of vote (Y ) among Democrats (X = 1)?

fY |X (0|1) =
0.10
0.55

≈ 0.18 fY |X (1|1) =
0.45
0.55

≈ 0.82

Among Democrats, 82% vote Yes. Among Republicans: 0.15/0.45 ≈ 33%.
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Part VI

Independence of Random Variables

When knowing one tells you nothing about the other
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Independence of Random Variables
Definition

Random variables X and Y are independent if:

fX ,Y (x, y) = fX (x) · fY (y) for all x, y

Equivalent statements:

• fY |X (y |x) = fY (y) for all x, y
• Knowing X tells you nothing about the distribution of Y

Notation: X ⊥⊥ Y

This extends independence of events to random variables.
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Testing Independence from a Joint PMF

Question: Are X (party) and Y (vote) independent?

Y = 0 Y = 1 fX (x)
X = 0 0.30 0.15 0.45
X = 1 0.10 0.45 0.55

fY (y) 0.40 0.60 1.00

Check: Does fX ,Y (x, y) = fX (x) · fY (y)?

For X = 0,Y = 0: fX (0) · fY (0) = 0.45 × 0.40 = 0.18

But fX ,Y (0, 0) = 0.30 ≠ 0.18

Not independent. Party and vote are related.
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What Independence Would Look Like

If X and Y were independent with the same marginals:

Y = 0 Y = 1 fX (x)
X = 0 0.45 × 0.40 = 0.18 0.45 × 0.60 = 0.27 0.45
X = 1 0.55 × 0.40 = 0.22 0.55 × 0.60 = 0.33 0.55

fY (y) 0.40 0.60 1.00

Each cell would equal (row marginal) × (column marginal).

Under independence, party wouldn’t predict vote at all.
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Today’s Key Ideas

1. Random variables: Functions mapping outcomes to numbers

2. PMF (discrete): fX (x) = P(X = x)

3. PDF (continuous): Probability = area under the curve

4. CDF (both): FX (x) = P(X ≤ x)

5. Joint distributions: Describe multiple variables together

6. Independence: fX ,Y (x, y) = fX (x) · fY (y)

Now we can describe what we want to learn about populations.
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Looking Ahead

Wednesday: Famous distributions

• Bernoulli and Binomial (counting successes)
• Poisson (rare events)
• Uniform and Normal (continuous)

Next week: Expected value and variance

• Summarizing distributions with numbers
• The most important summary: the mean

Wednesday’s distributions will show up constantly—they’re the building blocks.
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For Wednesday

Reading:

• Aronow & Miller, §1.2 (finish): Support, bivariate distributions
• Blackwell, Chapter 2.3–2.4: Plug-in estimators

Problem Set 1 will be posted this week.

• Covers probability, conditional probability, Bayes’ Rule
• Includes working with joint PMFs and testing independence
• Due: February 14

Questions?
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