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Where Are We?

Monday: Random variables

® Random variables as functions from outcomes to numbers
® PMFs (discrete), PDFs (continuous), CDFs (both)
® Joint distributions and independence of random variables

Today: Famous distributions

® Discrete: Bernoulli, Binomial, Poisson
® Continuous: Uniform, Normal, Exponential

® Why these specific distributions matter

Reading: Aronow & Miller §1.2 (pp. 15-31), Blackwell Ch. 2.3
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Why These Distributions?

Many distributions are named. We focus on six because:

1. They model real phenomena: Elections, counts, durations, measurements
2. They’re mathematically tractable: We can derive expectations, variances

3. They recur constantly: Master these, and you’re equipped for the course
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Today’s Cast of Characters

® Bernoulli — the foundation (yes/no outcomes)
® Binomial — counting successes

® Poisson — rare events

® Uniform — equiprobable outcomes

® Normal — the star of the show

® Exponential — waiting times
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The Bernoulli Distribution

Success or Failure
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The Bernoulli Distribution

The simplest random variable: two outcomes.

Definition: X ~ Bernoulli(p) if:

P 1 with probability p
~ o with probability 1—p

The PMF is: fx(x) = p*(1 = p)'™* for x € {0, 1}
Examples:

® Coin flip: p=0.5
® Voter turnout: Did this person vote? (p ~ 0.6 in US)
® Survey response: Does respondent approve? (p =7)
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Bernoulli: Expectation and Variance

For X ~ Bernoulli(p):

Expected value:
E[X]=0-(1-p)+1-p=p

Variance:

Var[X] = E[X?] - (E[X])?
=p-p*=p(1-p)

Note: Variance is maximized when p = 0.5. Certainty (p = 0 or p = 1) means zero variance.
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Visualizing Bernoulli Variance

Var[X] = p(1 - p)

0.25 axat p=0.5

When outcomes are most uncertain (p = 0.5), variance is highest.
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The Binomial Distribution

Counting Successes
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From Bernoulli to Binomial

Setup: Run n independent Bernoulli trials, each with success probability p.

Question: What’s the distribution of the total number of successes?

If Xq, Xo, ..., Xp fid Bernoulli(p), then:

Y = Z Xi ~ Binomial(n, p)

i=1

Examples:

® 10 coin flips: How many heads?
® 1000 voters sampled: How many support candidate A?
® 50 precincts: How many have irregularities?
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The Binomial PMF

For Y ~ Binomial(n, p):
fY(k) =P(Y = k) = (Z)pk(1 _p)n—k

fork€{0,1,2,...,n}
Why this formula?

e pk: probability of k successes

® (1—p)"*: probability of n — k failures

® (7): number of ways to arrange k successes in n trials
The binomial coefficient “chooses” which trials are successes.
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Binomial: Expectation and Variance

For Y ~ Binomial(n, p):

Expected value: Since Y = 37 | X; where X; ~ Bernoulli(p):
n
E[Y] = > ELX] =np
i=1
Variance: Since the X; are independent:

Var[Y] = Z Var[X;] = np(1 - p)
i=1

Linearity of expectation works always. Additivity of variance requires independence.
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Visualizing the Binomial

P(Y =k) Bln(10,03) P(Y =k) Bln(]0,07)

The distribution is centered at np and symmetric when p = 0.5.

Gov 2001 Scott Cunningham

13/34



Part Il

The Poisson Distribution

Counts of Rare Events
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The Poisson Distribution

Setup: Counting events that occur independently at a constant rate.

Definition: X ~ Poisson(1) has PMF:

kg2
fx(k) = o forke {0,1,2,...}

where A > 0 is the rate parameter.
Examples:

® Number of coups in a region per decade
® Number of Supreme Court vacancies per presidential term

® Number of mass casualty events per year
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Poisson: Key Properties

For X ~ Poisson(A):

Expected value: E[X] = 4
Variance: Var[X] = A

The mean equals the variance. This is the defining characteristic.

Poisson approximation to Binomial:

If nis large and p is small (so np = A is moderate):

Binomial(n, p) ~ Poisson(A = np)

This is useful for rare events: many trials, low probability per trial.

Gov 2001 Scott Cunningham 16/34



Visualizing the Poisson

As A increases, the distribution shifts right and becomes more symmetric.
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Part IV

The Uniform Distribution

All Outcomes Equally Likely
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The Continuous Uniform Distribution

Definition: X ~ Uniform(q, b) has PDF:

— ifa<x<bh
x) = b—a ! =7 =
AL {O otherwise
Every value in [a, b] is equally likely.
CDF:
0 if x<a
Fx(x) =152 ifa<x<b
1 if x> b
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Uniform: Expectation and Variance

For X ~ Uniform(a, b):

Expected value:

a+b
X] =
x1=22
(The midpoint — by symmetry)
Variance: . ,
Var[X] = (b-a
12

Special case: Uniform(0, 1) has E[X] = 0.5 and Var[X] = 1/12.

Political science example: Random assignment in experiments. If we randomly assign
treatment with probability 0.5, we’re implicitly drawing from Uniform(0, 1) and treating if
the draw < 0.5.
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Visualizing the Uniform

PDF: fx(x) CDF: Fx(x)

il
Q

Flat PDF means equal probability density everywhere in [a, b].
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PartV

The Normal Distribution

The Star of the Show
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The Normal Distribution

Definition: X ~ Normal(y, 0%) has PDF:

X — )2
() = exp (—ﬂ)

for x € R, where y is the mean and o2 is the variance.

Why so important?

1. Central Limit Theorem: Sample means are approximately normal
2. Mathematical convenience: Closed under addition, scaling

3. Good approximation: Economic indicators, polling aggregates, measurement error

Gov 2001 Scott Cunningham 23/34



Normal: Key Properties

For X ~ Normal(y, 02):

Expected value: E[X] = u
Variance: Var[X] = o2
Closure properties:

® If X ~ N(u,0?), then aX + b ~ N(au + b, a’c?)
® If X ~ N(ux,0%) and Y ~ N(uy, 03) are independent, then
X+Y ~ N(ux + py, o5 + 0y)

These properties make the normal uniquely tractable for statistical inference.
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The Standard Normal

Definition: Z ~ N(0, 1) is the standard normal.

Standardization: If X ~ N(y, o), then:

X_
7=

~ N(0,1)

Why standardize?

® Tables and software give probabilities for Z
® Comparing variables on different scales

® Building test statistics

Convention: ®(z) = P(Z < z) is the standard normal CDF.
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The 68-95-99.7 Rule
For X ~ N(u, 0?):

95%

Vv

p=2—0 g p+ag+20

® 68% of values within 1 SD of mean
® 95% within 2 SDs (actually 1.96)
® 99.7% within 3 SDs
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Visualizing the Normal

f()

Larger o = flatter, more spread out. Same total area (= 1) always.
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Part VI

The Exponential Distribution

Waiting for an Event
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The Exponential Distribution

Setup: How long until the next event, if events occur at constant rate A?
Definition: X ~ Exponential(1) has PDF:

fx(x) =Ae™ forx>0

where A > 0 is the rate parameter (same A as Poisson).

Political science examples:

® Time until a cabinet collapse
® Duration of ceasefires

® Time between policy changes
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Exponential: Key Properties

For X ~ Exponential(1):

Expected value: E[X] = %

Variance: Var[X] = %
CDF: Fx(x) =1— e ™ for x>0

Memoryless property: P(X > s+t | X >s) =P(X > 1)

The probability of waiting another t units doesn’t depend on how long you’ve already
waited. This is the continuous analog of the geometric distribution.
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Poisson and Exponential: Two Sides of One Coin

The Poisson-Exponential connection:

If events occur at rate A:

¢ Number of events in time t ~ Poisson(At)

® Time between events ~ Exponential(A)

Same process, different questions.

Example: Supreme Court vacancies

® Poisson: How many vacancies in 4 years?

® Exponential: How long until the next vacancy?
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How These Distributions Connect

sum of n n—00,p—0 dual
Bernoulli(p) Binomial(n, p) Poisson (A1) Exp(A)

~

-

CLT

Normal(p, 6?)

® Poisson <> Exponential: Counts vs. waiting times

Bernoulli — Binomial: Sum of independent trials
Binomial — Poisson: Many trials, small probability

Binomial — Normal: Central Limit Theorem (Week 5)
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Summary: Six Distributions to Know

Distribution Support E[X] Var[X] Use case

Bernoulli(p) {0, 1} p p(1—p) Binary outcomes
Binomial(n,p)  {0,...,n} np np(1—p) Count successes
Poisson(A) {0,1,2,...} A A Rare event counts
Exponential(1) [0, c0) 1/ 1/22 Waiting times
Uniform(a, b) [a, b] %b % Equal probability
Normal(y,0?) R i o? The default

These distributions are the vocabulary of statistics. Master them now.
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Part VII

Working with Distributions in R

Simulating and Visualizing
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Sampling from Distributions in R

R has functions for every major distribution:

# Generate
rnorm (100,
rbinom (50,
0.3)
rpois (100,
runif (100,
rexp (100,

random samples

mean = 0, sd = 1) # 100
size = 10, prob = 0.3) #
lambda = 5) # 100
min = @, max = 1) # 100
rate = 2) # 100

draws from N(0,1)
50 draws from Binom (10,

draws from Poisson(5)
draws from Uniform(@,1)
draws from Exp(2)

Pattern: r + distribution name (r for “random”)
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The Four Functions: d, p, q, r

Every distribution has four functions:

# For Normal(0,1):

dnorm (0) # d = density (PDF value at x=0)
pnorm(1.96) # p = probability (CDF: P(X <= 1.96))
gnorm (0.975) # g = quantile (inverse CDF)
rnorm(100) # r = random samples

d: “What’s the height of the density at this point?”
® p: “What’s the probability of being less than this?”
g: “What value gives this probability?”

r

: “Give me random draws”
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Visualizing Distributions

library(ggplot2)

# Plot Normal PDF
x <- seq(-4, 4, length.out = 200)
ggplot(data. frame(x = x, y = dnorm(x)), aes(x, y)) +

geom_line(color = "steelblue”, linewidth = 1.2) +
labs(title = "Standard Normal Distribution”,
x = "x", y = "Density")
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Distribution Shapes

Gov 2001

Normal Distributions
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Sampling from Distributions

Random Samples from Different Distributions (n = 1000)

Exponential(1) Normal(0,1) Uniform(0,1)
0.8
15
0.4
0.6
> 0.3 1.0
204
8 02
0.5
0.2
| ) ||| || |
0.0 ||||I|IIII-|.... 00 - .lll“ | II.I... 0.0 |
0 2 4 6 8 -2 0 2 0.00 0.25 0.50 0.75 1.00
Value

Random samples from different distributions (n = 1000 each).
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Looking Ahead

Next week: Expected value and variance

® Defining E[X] and Var[X] formally
® Properties: linearity, Chebyshev’s inequality

® Covariance and correlation

Reading:

® Aronow & Miller, §2.1 (pp. 45-66)
® Blackwell, Chapter 2.4-2.5

Problem Set 1: Due February 14

Gov 2001 Scott Cunningham 40/34



