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Where Are We?

Monday: Random variables

• Random variables as functions from outcomes to numbers
• PMFs (discrete), PDFs (continuous), CDFs (both)
• Joint distributions and independence of random variables

Today: Famous distributions

• Discrete: Bernoulli, Binomial, Poisson
• Continuous: Uniform, Normal, Exponential
• Why these specific distributions matter

Reading: Aronow & Miller §1.2 (pp. 15–31), Blackwell Ch. 2.3
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Why These Distributions?

Many distributions are named. We focus on six because:

1. They model real phenomena: Elections, counts, durations, measurements

2. They’re mathematically tractable: We can derive expectations, variances

3. They recur constantly: Master these, and you’re equipped for the course
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Today’s Cast of Characters

• Bernoulli — the foundation (yes/no outcomes)
• Binomial — counting successes
• Poisson — rare events
• Uniform — equiprobable outcomes
• Normal — the star of the show
• Exponential — waiting times
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Part I

The Bernoulli Distribution

Success or Failure
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The Bernoulli Distribution

The simplest random variable: two outcomes.

Definition: X ∼ Bernoulli(p) if:

X =

{
1 with probability p

0 with probability 1 − p

The PMF is: fX (x) = px (1 − p)1−x for x ∈ {0, 1}

Examples:

• Coin flip: p = 0.5
• Voter turnout: Did this person vote? (p ≈ 0.6 in US)
• Survey response: Does respondent approve? (p =?)
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Bernoulli: Expectation and Variance

For X ∼ Bernoulli(p):

Expected value:
E[X ] = 0 · (1 − p) + 1 · p = p

Variance:

Var[X ] = E[X 2] − (E[X ])2

= p − p2 = p(1 − p)

Note: Variance is maximized when p = 0.5. Certainty (p = 0 or p = 1) means zero variance.
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Visualizing Bernoulli Variance

p

Var[X ] = p(1 − p)

0 0.5 1

0.25 max at p = 0.5

When outcomes are most uncertain (p = 0.5), variance is highest.

Gov 2001 Scott Cunningham 8 / 34



Part II

The Binomial Distribution

Counting Successes
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From Bernoulli to Binomial

Setup: Run n independent Bernoulli trials, each with success probability p.

Question: What’s the distribution of the total number of successes?

If X1, X2, . . . , Xn
iid∼ Bernoulli(p), then:

Y =

n∑︁
i=1

Xi ∼ Binomial(n, p)

Examples:

• 10 coin flips: How many heads?
• 1000 voters sampled: How many support candidate A?
• 50 precincts: How many have irregularities?
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The Binomial PMF

For Y ∼ Binomial(n, p):

fY (k) = P(Y = k) =
(
n
k

)
pk (1 − p)n−k

for k ∈ {0, 1, 2, . . . , n}

Why this formula?

• pk : probability of k successes
• (1 − p)n−k : probability of n − k failures
• (n

k

)
: number of ways to arrange k successes in n trials

The binomial coefficient “chooses” which trials are successes.
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Binomial: Expectation and Variance

For Y ∼ Binomial(n, p):

Expected value: Since Y =
∑n

i=1 Xi where Xi ∼ Bernoulli(p):

E[Y ] =
n∑︁
i=1

E[Xi] = np

Variance: Since the Xi are independent:

Var[Y ] =
n∑︁
i=1

Var[Xi] = np(1 − p)

Linearity of expectation works always. Additivity of variance requires independence.
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Visualizing the Binomial

Bin(10, 0.3)

k

P (Y = k )

0 2 4 6 8 10

Bin(10, 0.7)

k

P (Y = k )

0 2 4 6 8 10

The distribution is centered at np and symmetric when p = 0.5.
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Part III

The Poisson Distribution

Counts of Rare Events
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The Poisson Distribution

Setup: Counting events that occur independently at a constant rate.

Definition: X ∼ Poisson(𝜆) has PMF:

fX (k) =
𝜆ke−𝜆

k!
for k ∈ {0, 1, 2, . . .}

where 𝜆 > 0 is the rate parameter.

Examples:

• Number of coups in a region per decade
• Number of Supreme Court vacancies per presidential term
• Number of mass casualty events per year
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Poisson: Key Properties

For X ∼ Poisson(𝜆):

Expected value: E[X ] = 𝜆

Variance: Var[X ] = 𝜆

The mean equals the variance. This is the defining characteristic.

Poisson approximation to Binomial:

If n is large and p is small (so np = 𝜆 is moderate):

Binomial(n, p) ≈ Poisson(𝜆 = np)

This is useful for rare events: many trials, low probability per trial.
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Visualizing the Poisson

𝜆 = 2

k

P

0 1 2 3 4 5

𝜆 = 5

k

P

0 1 2 3 4 5 6 7 8

As 𝜆 increases, the distribution shifts right and becomes more symmetric.
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Part IV

The Uniform Distribution

All Outcomes Equally Likely
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The Continuous Uniform Distribution

Definition: X ∼ Uniform(a, b) has PDF:

fX (x) =
{

1
b−a if a ≤ x ≤ b

0 otherwise

Every value in [a, b] is equally likely.

CDF:

FX (x) =

0 if x < a
x−a
b−a if a ≤ x ≤ b

1 if x > b
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Uniform: Expectation and Variance

For X ∼ Uniform(a, b):

Expected value:

E[X ] = a + b
2

(The midpoint — by symmetry)

Variance:
Var[X ] = (b − a)2

12

Special case: Uniform(0, 1) has E[X ] = 0.5 and Var[X ] = 1/12.

Political science example: Random assignment in experiments. If we randomly assign
treatment with probability 0.5, we’re implicitly drawing from Uniform(0, 1) and treating if
the draw < 0.5.

The standard uniform is fundamental: all random number generators start here.
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Visualizing the Uniform

PDF: fX (x)

x
a b

1
b−a

CDF: FX (x)

x
a b

1

Flat PDF means equal probability density everywhere in [a, b].
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Part V

The Normal Distribution

The Star of the Show
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The Normal Distribution

Definition: X ∼ Normal(𝜇, 𝜎2) has PDF:

fX (x) =
1

√
2𝜋𝜎2

exp

(
− (x − 𝜇)2

2𝜎2

)
for x ∈ R, where 𝜇 is the mean and 𝜎2 is the variance.

Why so important?

1. Central Limit Theorem: Sample means are approximately normal

2. Mathematical convenience: Closed under addition, scaling

3. Good approximation: Economic indicators, polling aggregates, measurement error
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Normal: Key Properties

For X ∼ Normal(𝜇, 𝜎2):

Expected value: E[X ] = 𝜇

Variance: Var[X ] = 𝜎2

Closure properties:

• If X ∼ N (𝜇, 𝜎2), then aX + b ∼ N (a𝜇 + b, a2𝜎2)
• If X ∼ N (𝜇X , 𝜎2

X ) and Y ∼ N (𝜇Y , 𝜎2
Y ) are independent, then

X + Y ∼ N (𝜇X + 𝜇Y , 𝜎
2
X + 𝜎2

Y )

These properties make the normal uniquely tractable for statistical inference.
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The Standard Normal

Definition: Z ∼ N (0, 1) is the standard normal.

Standardization: If X ∼ N (𝜇, 𝜎2), then:

Z =
X − 𝜇

𝜎
∼ N (0, 1)

Why standardize?

• Tables and software give probabilities for Z
• Comparing variables on different scales
• Building test statistics

Convention: Φ(z) = P (Z ≤ z) is the standard normal CDF.
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The 68–95–99.7 Rule

For X ∼ N (𝜇, 𝜎2):

𝜇𝜇 − 𝜎 𝜇 + 𝜎𝜇 − 2𝜎 𝜇 + 2𝜎

68%

95%

• 68% of values within 1 SD of mean
• 95% within 2 SDs (actually 1.96)
• 99.7% within 3 SDs
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Visualizing the Normal

x

f (x)

𝜎 = 0.5

𝜎 = 1

𝜎 = 2

𝜇

Larger 𝜎 ⇒ flatter, more spread out. Same total area (= 1) always.
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Part VI

The Exponential Distribution

Waiting for an Event
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The Exponential Distribution

Setup: How long until the next event, if events occur at constant rate 𝜆?

Definition: X ∼ Exponential(𝜆) has PDF:

fX (x) = 𝜆e−𝜆x for x ≥ 0

where 𝜆 > 0 is the rate parameter (same 𝜆 as Poisson).

Political science examples:

• Time until a cabinet collapse
• Duration of ceasefires
• Time between policy changes
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Exponential: Key Properties

For X ∼ Exponential(𝜆):

Expected value: E[X ] = 1
𝜆

Variance: Var[X ] = 1
𝜆2

CDF: FX (x) = 1 − e−𝜆x for x ≥ 0

Memoryless property: P(X > s + t | X > s) = P(X > t)
The probability of waiting another t units doesn’t depend on how long you’ve already
waited. This is the continuous analog of the geometric distribution.
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Poisson and Exponential: Two Sides of One Coin

The Poisson–Exponential connection:

If events occur at rate 𝜆:

• Number of events in time t ∼ Poisson(𝜆t)
• Time between events ∼ Exponential(𝜆)

Same process, different questions.

Example: Supreme Court vacancies

• Poisson: How many vacancies in 4 years?
• Exponential: How long until the next vacancy?
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How These Distributions Connect

Bernoulli(p) Binomial(n, p) Poisson(𝜆) Exp(𝜆)

Normal(𝜇, 𝜎2 )

sum of n n → ∞, p → 0

CLT

dual

• Bernoulli→ Binomial: Sum of independent trials
• Binomial→ Poisson: Many trials, small probability
• Binomial→ Normal: Central Limit Theorem (Week 5)
• Poisson↔ Exponential: Counts vs. waiting times
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Summary: Six Distributions to Know

Distribution Support E[X ] Var[X ] Use case

Bernoulli(p) {0, 1} p p(1 − p) Binary outcomes
Binomial(n, p) {0, . . . , n} np np(1 − p) Count successes
Poisson(𝜆) {0, 1, 2, . . .} 𝜆 𝜆 Rare event counts
Exponential(𝜆) [0,∞) 1/𝜆 1/𝜆2 Waiting times

Uniform(a, b) [a, b] a+b
2

(b−a)2
12 Equal probability

Normal(𝜇, 𝜎2) R 𝜇 𝜎2 The default

These distributions are the vocabulary of statistics. Master them now.

Gov 2001 Scott Cunningham 33 / 34



Part VII

Working with Distributions in R

Simulating and Visualizing
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Sampling from Distributions in R

R has functions for every major distribution:

# Generate random samples
rnorm (100, mean = 0, sd = 1) # 100 draws from N(0,1)
rbinom (50, size = 10, prob = 0.3) # 50 draws from Binom(10,

0.3)
rpois (100, lambda = 5) # 100 draws from Poisson (5)
runif (100, min = 0, max = 1) # 100 draws from Uniform (0,1)
rexp (100, rate = 2) # 100 draws from Exp(2)

Pattern: r + distribution name (r for “random”)
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The Four Functions: d, p, q, r

Every distribution has four functions:

# For Normal (0,1):
dnorm (0) # d = density (PDF value at x=0)
pnorm (1.96) # p = probability (CDF: P(X <= 1.96))
qnorm (0.975) # q = quantile (inverse CDF)
rnorm (100) # r = random samples

• d: “What’s the height of the density at this point?”
• p: “What’s the probability of being less than this?”
• q: “What value gives this probability?”
• r: “Give me random draws”
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Visualizing Distributions

library(ggplot2)

# Plot Normal PDF
x <- seq(-4, 4, length.out = 200)
ggplot(data.frame(x = x, y = dnorm(x)), aes(x, y)) +

geom_line(color = "steelblue", linewidth = 1.2) +
labs(title = "Standard Normal Distribution",

x = "x", y = "Density")
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Distribution Shapes
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Sampling from Distributions

Exponential(1) Normal(0,1) Uniform(0,1)

0 2 4 6 8 −2 0 2 0.00 0.25 0.50 0.75 1.00
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Random Samples from Different Distributions (n = 1000)

Random samples from different distributions (n = 1000 each).
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Looking Ahead

Next week: Expected value and variance

• Defining E[X ] and Var[X ] formally
• Properties: linearity, Chebyshev’s inequality
• Covariance and correlation

Reading:

• Aronow & Miller, §2.1 (pp. 45–66)
• Blackwell, Chapter 2.4–2.5

Problem Set 1: Due February 14
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