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Today’s Reading

Required

® Aronow & Miller, §2.1 (variance) and §2.2.1-2.2.2 (covariance, correlation)

e Blackwell, Ch. 2.4-2.5: Summaries of distributions

Key concepts: variance, standard deviation, covariance, correlation, independence vs.
uncorrelatedness.
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Beyond the Mean

Last time: Expected value E[ X] tells us the center of a distribution.

But consider two distributions with the same mean:

Narrow Wide

Both have mean 0, but they’re very different distributions.
We need a measure of spread.
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Definition: Variance

Variance
The variance of a random variable X is:

Var(X) = E [(X - B[X])?]

Interpretation:
® Average squared deviation from the mean
® How far, on average, is X from its expected value?

® larger variance = more spread out

Also written o2 or o%. Always non-negative: Var(X) > 0.
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The Computational Formula

Useful Alternative

Var(X) = E[X?] — (E[X])?

Derivation:

X?] = 2E[X] E[X] + (E[X])?

[
[X* - 2XE[X] + (E[X])]
[
[X*] - (E[X])°

This is often easier to compute!
Remember: E[X?] # (E[X])? unless Var(X) = 0.
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Example: Variance of a Die Roll

Setup: Roll a fair die. Find Var(X).
From Monday: E[X] = 3.5 and E[X?] = 2

Using the computational formula:

Var(X) = E[X?] - (E[X])?

91

= — —(3.5)?
-~ (35
91

= — - 12.25
6

= 15.167 — 12.25 = 2.917

Standard deviation: SD(X) = v2.917 =~ 1.71

Gov 2001 Scott Cunningham 6/27



Example: Bernoulli Variance

Setup: X ~ Bernoulli(p)
We know: E[X] =p
Find E[X?]: Since X € {0, 1}, we have X? = X, so E[X?] = E[X] = p

Variance:

Var(X) = E[X*] - (E[X])> = p - p* = p(1 - p)

Key Result

For X ~ Bernoulli(p): Var(X) = p(1—p)
Maximum variance at p = 0.5: most uncertainty when outcome is 50-50.
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Standard Deviation

Definition
The standard deviation is the square root of variance:

SD(X) = ax = \Var(X)

Why use SD instead of variance?
® Same units as X (variance has squared units)
® More interpretable: “typical deviation from the mean”

® For normal distributions: about 68% of data within 1 SD of mean

We’ll use both Var(X) and SD(X) throughout the course.
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Properties of Variance: Basics

1. Var(X) > 0 always (squared deviations can’t be negative)
2. Var(c) = 0 for any constant ¢ (no spread if no randomness)
3. Var(aX + b) = a® Var(X)

Property 3 in words: Adding a constant shifts the distribution but doesn’t change
spread. Scaling by a multiplies the spread by |a| (variance by a?).
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Variance of Sums: A Critical Difference from Expectation

For independent X and Y:

Var(X + Y) = Var(X) + Var(Y)

Warning: Independence is required!

Compare to expectation:
e E[X+ Y]=E[X]+E[Y] (always)
® Var(X + Y) =Var(X) + Var(Y) (only if independent)

If X and Y are dependent, we need covariance.
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Why Variance Needs Independence
Counter-example: Let Y = —X.
Then:

Var(X +Y) =Var(X + (-X)) =Var(0) =0

But:

Var(X) + Var(Y) = Var(X) + Var(—X)
= Var(X) + (=1)? Var(X)
=2Var(X) #0

The general formula (which we’ll derive shortly):

Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)
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Example: Binomial Variance

Setup: X ~ Binomial(n, p), where X = X; +--- + X, and X; i Bernoulli(p).
Since the X; are independent:
Var(X) =Var(X; + -+ X,)
=Var(X;) + - -+ + Var(X,)
=p(1-p)+---+p(1-p)
=np(1-p)

Key Result

For X ~ Binomial(n, p): Var(X) = np(1 - p)
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Variance: Quick Reference

Distribution Notation E[X] Var(X)

Bernoulli Bernoulli(p) p p(1—p)
Binomial Binomial(n,p) np  np(1-p)
Poisson Poisson(A) A A
Uniform Uniform(a, b) %’ (b1—2a)2
Normal N(p, ?) 1 o?
Exponential Exp(A) % %

Notice: Poisson has mean = variance. Normal’s ¢ parameter IS the variance.
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From One Variable to Two

So far: Summaries for a single random variable X
e Center: E[ X]
® Spread: Var(X)

Now: What if we have two random variables X and Y?

New question: Do X and Y move together?
® When X is high, is Y also high? (positive relationship)
® When X is high, is Y low? (negative relationship)

® [s there no systematic pattern? (no relationship)

We need covariance.
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Definition: Covariance

Covariance

The covariance of random variables X and Y is:
Cov(X,Y) =E[(X-E[X])(Y -E[Y])]

Interpretation:
® Average of the product of deviations from means
® Cov(X,Y) > 0: X and Y tend to be above/below their means together
e Cov(X,Y) < 0: when one is above its mean, the other tends to be below

® Cov(X,Y) =0: no linear relationship (uncorrelated)
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Computational Formula for Covariance

Useful Alternative

Cov(X, Y) = E[XY] - E[X] E[ Y]

Derivation:

Note: Variance is a special case: Var(X) = Cov(X, X)
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Key Insight: Variance is a Special Case of Covariance

Unifying Principle

Cov(X, X) = Var(X)

This is beautiful: Variance and covariance are the same concept.

Covariance measures how two variables move together.
Variance measures how a variable moves with itself.

This unification comes from Aronow & Miller’s “agnostic” framework.
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Properties of Covariance

1. Cov(X,Y) =Cov(Y,X) (symmetric)
2. Cov(X,c) =0 for any constant ¢
3. Cov(aX + b, cY + d) =ac- Cov(X,Y)

Bilinearity (the key property):

Cov(X+Y,Z) =Cov(X,Z) + Cov(Y,Z2)

Bilinearity lets us expand sums inside covariance—crucial for deriving variance of sums.
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Variance of Sums (General Formula)

Using bilinearity of covariance:

Var(X+Y)=Cov(X+ Y, X+Y)
= Cov(X, X) + Cov(X, Y) + Cov(Y, X) + Cov(Y,Y)
= Var(X) + 2Cov(X,Y) + Var(Y)

General Formula

Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)
Special case: If X L Y (independent), then Cov(X, Y) =0, so:

Var(X + Y) = Var(X) + Var(Y)
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Independence = Zero Covariance

Theorem
If X and Y are independent, then Cov(X, Y) = 0.

Proof:
If X 1 Y, then E[XY] = E[X] E[Y]. Therefore:

Cov(X,Y) =E[XY] -E[X]E[Y] =E[X]E[Y] - E[X]E[Y] =0
Warning: The converse is FALSE!

Cov(X,Y)=0= X 1Y

Zero covariance means no linear relationship. There could still be a nonlinear one.
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Zero Covariance = Independence

Classic example: Let X ~ Uniform(—1,1) and Y = X2.
Y is completely determined by X—they’re totally dependent!

But check the covariance:

Cov(X,Y) =E[XY] —-E[X] E[Y]
=E[X - X?] —-E[X] - E[X?]
=E[X?] - 0-E[X?] (since E[X] = 0 by symmetry)
=E[X’] =0 (by symmetry)

Lesson: Cov = 0 only rules out linear relationships.
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Correlation: Standardized Covariance

Problem with covariance: Units depend on X and Y.

Is Cov(X, Y) = 1000 big? Depends on the scales!

Correlation

Gov 2001

The correlation (or Pearson correlation coefficient) is:
Cov(X,Y)  Cov(X,Y)

SD(X)-SD(Y) v/ Var(X) Var(Y)

Corr(X,Y) = pxy =

Key property: -1 < p < 1 always
® p = 1: perfect positive linear relationship
® p = —1: perfect negative linear relationship

® p =0: no linear relationship (uncorrelated)
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Visualizing Correlation

p=09 p=0.5 p=0 p=-038
25 ° N i

As |p| — 1, points cluster closer to a line.
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Properties of Correlation

Gov 2001

Key Properties
1. =1 < pxy <1

2. pxy =pyx (symmetric)
3. pxy = £1iff Y = a+ bX for some constants a, b
> p=1ifb>0,p=-1ifb<0
4. Corr(aX + b, cY + d) =sign(ac) - pxy (if ac # 0)

5. Correlation is unit-free (dimensionless)

Linear transformations don’t change the magnitude of correlation, only possibly the sign.
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Correlation Is Not Causation

This will be a recurring theme in this course.

Example: Democracy and peace are positively correlated.

Does democracy cause peace? Maybe—but there are confounders: wealth, trade,
alliances, geography all correlate with both.

Three possible explanations for Corr(X, Y) # 0:
1. X causes Y
2. Y causes X

3. Some third variable Z causes both (confounding)

Correlation describes association. Causation requires more.
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Example: Education and Income

Suppose: Corr(Education, Income) = 0.4

What does this tell us?
® There’s a positive linear association
® People with more education tend to have higher income

® The relationship is moderate (not perfect)

What does this NOT tell us?
® Whether education causes higher income
® Maybe ability drives both
® Maybe family background drives both

® Maybe income enables more education (reverse causality)

Distinguishing these is the hard work of causal inference.
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Key Takeaways

1. Variance measures spread: Var(X) = E[X?] — (E[X])?
2. Covariance is general; variance is the special case Cov(X, X)

3. Independence = Cov = 0, but not vice versa

The big idea: Correlation measures linear association, not causation.

Next week: Joint distributions and the conditional expectation function.
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For Monday

Topic: Joint Distributions and the CEF

Reading:
® A&M §1.3 and §2.2.3-2.2.4
® Blackwell Ch. 1

The CEF is the heart of this course—regression approximates it.
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