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Today’s Reading

Required
• Aronow & Miller, §2.1 (variance) and §2.2.1–2.2.2 (covariance, correlation)
• Blackwell, Ch. 2.4–2.5: Summaries of distributions

Key concepts: variance, standard deviation, covariance, correlation, independence vs.
uncorrelatedness.
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Beyond the Mean

Last time: Expected value E[X ] tells us the center of a distribution.
But consider two distributions with the same mean:

Narrow Wide

Both have mean 0, but they’re very different distributions.
We need a measure of spread.
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Definition: Variance

Variance
The variance of a random variable X is:

Var(X ) = E
[
(X − E[X ])2

]
Interpretation:

• Average squared deviation from the mean
• How far, on average, is X from its expected value?
• Larger variance = more spread out

Also written 𝜎2 or 𝜎2
X . Always non-negative: Var(X ) ≥ 0.
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The Computational Formula

Useful Alternative

Var(X ) = E[X 2] − (E[X ])2

Derivation:

Var(X ) = E[(X − E[X ])2]
= E[X 2 − 2X E[X ] + (E[X ])2]
= E[X 2] − 2E[X ] E[X ] + (E[X ])2

= E[X 2] − (E[X ])2

This is often easier to compute!
Remember: E[X 2] ≠ (E[X ])2 unless Var(X ) = 0.
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Example: Variance of a Die Roll

Setup: Roll a fair die. Find Var(X ).
From Monday: E[X ] = 3.5 and E[X 2] = 91

6

Using the computational formula:

Var(X ) = E[X 2] − (E[X ])2

=
91
6

− (3.5)2

=
91
6

− 12.25

= 15.167 − 12.25 = 2.917

Standard deviation: SD(X ) =
√
2.917 ≈ 1.71
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Example: Bernoulli Variance

Setup: X ∼ Bernoulli(p)
We know: E[X ] = p

Find E[X 2]: Since X ∈ {0, 1}, we have X 2 = X , so E[X 2] = E[X ] = p

Variance:

Var(X ) = E[X 2] − (E[X ])2 = p − p2 = p(1 − p)

Key Result
For X ∼ Bernoulli(p): Var(X ) = p(1 − p)
Maximum variance at p = 0.5: most uncertainty when outcome is 50-50.
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Standard Deviation

Definition
The standard deviation is the square root of variance:

SD(X ) = 𝜎X =
√︁
Var(X )

Why use SD instead of variance?
• Same units as X (variance has squared units)
• More interpretable: “typical deviation from the mean”
• For normal distributions: about 68% of data within 1 SD of mean

We’ll use both Var(X ) and SD(X ) throughout the course.
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Properties of Variance: Basics

1. Var(X ) ≥ 0 always (squared deviations can’t be negative)

2. Var(c) = 0 for any constant c (no spread if no randomness)

3. Var(aX + b) = a2 Var(X )

Property 3 in words: Adding a constant shifts the distribution but doesn’t change
spread. Scaling by a multiplies the spread by |a| (variance by a2).
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Variance of Sums: A Critical Difference from Expectation

For independent X and Y :

Var(X + Y ) = Var(X ) + Var(Y )

Warning: Independence is required!

Compare to expectation:
• E[X + Y ] = E[X ] + E[Y ] (always)
• Var(X + Y ) = Var(X ) + Var(Y ) (only if independent)

If X and Y are dependent, we need covariance.
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Why Variance Needs Independence

Counter-example: Let Y = −X .
Then:

Var(X + Y ) = Var(X + (−X )) = Var(0) = 0

But:

Var(X ) + Var(Y ) = Var(X ) + Var(−X )
= Var(X ) + (−1)2 Var(X )
= 2Var(X ) ≠ 0

The general formula (which we’ll derive shortly):

Var(X + Y ) = Var(X ) + Var(Y ) + 2Cov(X ,Y )
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Example: Binomial Variance

Setup: X ∼ Binomial(n, p), where X = X1 + · · · + Xn and Xi
iid∼ Bernoulli(p).

Since the Xi are independent:

Var(X ) = Var(X1 + · · · + Xn)

= Var(X1) + · · · + Var(Xn)

= p(1 − p) + · · · + p(1 − p)

= np(1 − p)

Key Result
For X ∼ Binomial(n, p): Var(X ) = np(1 − p)
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Variance: Quick Reference

Distribution Notation E[X ] Var(X )
Bernoulli Bernoulli(p) p p(1 − p)
Binomial Binomial(n, p) np np(1 − p)
Poisson Poisson(𝜆) 𝜆 𝜆

Uniform Uniform(a, b) a+b
2

(b−a)2
12

Normal N (𝜇, 𝜎2) 𝜇 𝜎2

Exponential Exp(𝜆) 1
𝜆

1
𝜆2

Notice: Poisson has mean = variance. Normal’s 𝜎2 parameter IS the variance.
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From One Variable to Two

So far: Summaries for a single random variable X
• Center: E[X ]
• Spread: Var(X )

Now: What if we have two random variables X and Y?

New question: Do X and Y move together?
• When X is high, is Y also high? (positive relationship)
• When X is high, is Y low? (negative relationship)
• Is there no systematic pattern? (no relationship)

We need covariance.

Gov 2001 Scott Cunningham 14 / 27



Definition: Covariance

Covariance
The covariance of random variables X and Y is:

Cov(X ,Y ) = E [(X − E[X ]) (Y − E[Y ])]

Interpretation:
• Average of the product of deviations from means
• Cov(X ,Y ) > 0: X and Y tend to be above/below their means together
• Cov(X ,Y ) < 0: when one is above its mean, the other tends to be below
• Cov(X ,Y ) = 0: no linear relationship (uncorrelated)
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Computational Formula for Covariance

Useful Alternative

Cov(X ,Y ) = E[XY ] − E[X ] E[Y ]

Derivation:

Cov(X ,Y ) = E[(X − E[X ]) (Y − E[Y ])]
= E[XY − X E[Y ] − Y E[X ] + E[X ] E[Y ]]
= E[XY ] − E[X ] E[Y ] − E[Y ] E[X ] + E[X ] E[Y ]
= E[XY ] − E[X ] E[Y ]

Note: Variance is a special case: Var(X ) = Cov(X , X )
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Key Insight: Variance is a Special Case of Covariance

Unifying Principle

Cov(X , X ) = Var(X )

This is beautiful: Variance and covariance are the same concept.

Covariance measures how two variables move together.
Variance measures how a variable moves with itself.

This unification comes from Aronow & Miller’s “agnostic” framework.
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Properties of Covariance

1. Cov(X ,Y ) = Cov(Y , X ) (symmetric)

2. Cov(X , c) = 0 for any constant c

3. Cov(aX + b, cY + d) = ac · Cov(X ,Y )

Bilinearity (the key property):

Cov(X + Y ,Z ) = Cov(X ,Z ) + Cov(Y ,Z )

Bilinearity lets us expand sums inside covariance—crucial for deriving variance of sums.
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Variance of Sums (General Formula)

Using bilinearity of covariance:

Var(X + Y ) = Cov(X + Y , X + Y )
= Cov(X , X ) + Cov(X ,Y ) + Cov(Y , X ) + Cov(Y ,Y )
= Var(X ) + 2Cov(X ,Y ) + Var(Y )

General Formula

Var(X + Y ) = Var(X ) + Var(Y ) + 2Cov(X ,Y )

Special case: If X ⊥⊥ Y (independent), then Cov(X ,Y ) = 0, so:

Var(X + Y ) = Var(X ) + Var(Y )
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Independence⇒ Zero Covariance

Theorem
If X and Y are independent, then Cov(X ,Y ) = 0.

Proof:
If X ⊥⊥ Y , then E[XY ] = E[X ] E[Y ]. Therefore:

Cov(X ,Y ) = E[XY ] − E[X ] E[Y ] = E[X ] E[Y ] − E[X ] E[Y ] = 0

Warning: The converse is FALSE!
Cov(X ,Y ) = 0 ⇏ X ⊥⊥ Y

Zero covariance means no linear relationship. There could still be a nonlinear one.
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Zero Covariance⇏ Independence

Classic example: Let X ∼ Uniform(−1, 1) and Y = X 2.

Y is completely determined by X—they’re totally dependent!

But check the covariance:

Cov(X ,Y ) = E[XY ] − E[X ] E[Y ]
= E[X · X 2] − E[X ] · E[X 2]
= E[X 3] − 0 · E[X 2] (since E[X ] = 0 by symmetry)

= E[X 3] = 0 (by symmetry)

Lesson: Cov = 0 only rules out linear relationships.
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Correlation: Standardized Covariance

Problem with covariance: Units depend on X and Y .

Is Cov(X ,Y ) = 1000 big? Depends on the scales!

Correlation
The correlation (or Pearson correlation coefficient) is:

Corr(X ,Y ) = 𝜌XY =
Cov(X ,Y )

SD(X ) · SD(Y ) =
Cov(X ,Y )√︁

Var(X ) Var(Y )

Key property: −1 ≤ 𝜌 ≤ 1 always
• 𝜌 = 1: perfect positive linear relationship
• 𝜌 = −1: perfect negative linear relationship
• 𝜌 = 0: no linear relationship (uncorrelated)
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Visualizing Correlation

𝜌 = 0.9 𝜌 = 0.5 𝜌 = 0 𝜌 = −0.8

As |𝜌 | → 1, points cluster closer to a line.
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Properties of Correlation

Key Properties
1. −1 ≤ 𝜌XY ≤ 1

2. 𝜌XY = 𝜌YX (symmetric)
3. 𝜌XY = ±1 iff Y = a + bX for some constants a, b

▶ 𝜌 = 1 if b > 0; 𝜌 = −1 if b < 0

4. Corr(aX + b, cY + d) = sign(ac) · 𝜌XY (if ac ≠ 0)

5. Correlation is unit-free (dimensionless)

Linear transformations don’t change the magnitude of correlation, only possibly the sign.
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Correlation Is Not Causation

This will be a recurring theme in this course.

Example: Democracy and peace are positively correlated.

Does democracy cause peace? Maybe—but there are confounders: wealth, trade,
alliances, geography all correlate with both.

Three possible explanations for Corr(X ,Y ) ≠ 0:

1. X causes Y

2. Y causes X

3. Some third variable Z causes both (confounding)

Correlation describes association. Causation requires more.
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Example: Education and Income

Suppose: Corr(Education, Income) = 0.4

What does this tell us?
• There’s a positive linear association
• People with more education tend to have higher income
• The relationship is moderate (not perfect)

What does this NOT tell us?
• Whether education causes higher income
• Maybe ability drives both
• Maybe family background drives both
• Maybe income enables more education (reverse causality)

Distinguishing these is the hard work of causal inference.
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Key Takeaways

1. Variance measures spread: Var(X ) = E[X 2] − (E[X ])2

2. Covariance is general; variance is the special case Cov(X , X )

3. Independence⇒ Cov = 0, but not vice versa

The big idea: Correlation measures linear association, not causation.

Next week: Joint distributions and the conditional expectation function.
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For Monday

Topic: Joint Distributions and the CEF

Reading:
• A&M §1.3 and §2.2.3–2.2.4
• Blackwell Ch. 1

The CEF is the heart of this course—regression approximates it.
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