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Today’s Reading

Required
• Aronow & Miller, §1.3: Joint, marginal, conditional distributions (pp. 31–44)
• Blackwell, Ch. 1: Setting the stage for regression

Blackwell’s Chapter 1 introduces the CEF as the target of regression—this lecture builds
the foundations.
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The Big Picture

So far: Single random variables
• Distribution: f (x)
• Summary: E[X ], Var(X )

Now: Two (or more) random variables together
• How are they jointly distributed?
• If we know X , what does that tell us about Y?

This is where regression begins.
Regression asks: What’s E[Y |X ]? To answer that, we need conditional distributions.
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Joint Distribution: Discrete Case

Joint Probability Mass Function
For discrete random variables X and Y , the joint PMF is:

f (x, y) = Pr(X = x and Y = y)

Properties:
• f (x, y) ≥ 0 for all x, y

•
∑︁
x

∑︁
y

f (x, y) = 1

The joint PMF tells us the probability of every (x, y) combination.
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Example: Education and Party ID

Survey data: Joint distribution of Education (X ) and Party (Y )

Party (Y )
Education (X ) Dem Ind Rep Row Total

No College 0.20 0.15 0.15 0.50
College 0.18 0.12 0.20 0.50

Col Total 0.38 0.27 0.35 1.00

Reading the table: f (No College,Dem) = 0.20
This means: 20% of the population has no college and identifies as Democrat.
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Marginal Distributions

Question: What if we only care about X (ignoring Y )?

Marginal PMF
Themarginal distribution of X is obtained by summing over Y :

fX (x) =
∑︁
y

f (x, y) = Pr(X = x)

From our example:
• fX (No College) = 0.20 + 0.15 + 0.15 = 0.50
• fX (College) = 0.18 + 0.12 + 0.20 = 0.50

“Marginal” because these appear in the margins of the table.
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Visualizing Marginalization

0.20 0.15 0.15

0.18 0.12 0.20

No Col

College

Dem Ind Rep

0.50

0.50

fX

Sum across rows→ marginal distribution of X
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Conditional Distribution

Key question: Given that we know X = x , what’s the distribution of Y?

Conditional PMF
The conditional distribution of Y given X = x is:

fY |X (y |x) =
f (x, y)
fX (x)

=
Pr(X = x,Y = y)

Pr(X = x)

Intuition:
• Zoom in on the row where X = x
• Renormalize so probabilities sum to 1

This is the definitional formula for conditional distributions.
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Example: Party ID Given Education

What’s the distribution of Party among college graduates?

We need fY |X (y |College) for each party:

fY |X (Dem|College) = f (College,Dem)
fX (College)

=
0.18
0.50

= 0.36

fY |X (Ind|College) =
0.12
0.50

= 0.24

fY |X (Rep|College) =
0.20
0.50

= 0.40

Check: 0.36 + 0.24 + 0.40 = 1.00 ✓
Among college grads: 36% Dem, 24% Ind, 40% Rep
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Comparing Conditional Distributions

Dem Ind Rep

fY |X (y |No College) 0.40 0.30 0.30
fY |X (y |College) 0.36 0.24 0.40

What do we learn?
• The two conditional distributions are different
• Knowing education level changes our beliefs about party ID
• The conditional distribution of Y depends on X

This dependence is what regression studies.
(These are stylized numbers for illustration, not real survey data.)
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Independence of Random Variables

When does knowing X tell us nothing about Y?

Definition: Independence
X and Y are independent, written X ⊥⊥ Y , if:

f (x, y) = fX (x) · fY (y) for all x, y

Equivalent conditions:
• fY |X (y |x) = fY (y) for all x (conditioning doesn’t change anything)
• Pr(X = x,Y = y) = Pr(X = x) · Pr(Y = y)

In our education/party example, X and Y are NOT independent—the conditional
distributions differ.
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Joint Distribution: Continuous Case

Joint Probability Density Function
For continuous X and Y , the joint PDF f (x, y) satisfies:

Pr(X ∈ A,Y ∈ B) =
∬

A×B
f (x, y) dx dy

Properties:
• f (x, y) ≥ 0

•
∫ ∞

−∞

∫ ∞

−∞
f (x, y) dx dy = 1

Marginal: fX (x) =
∫ ∞
−∞ f (x, y) dy

Conditional: fY |X (y |x) = f (x,y )
fX (x )
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Example: Bivariate Normal

The most important continuous joint distribution

(X ,Y ) ∼ N (𝜇X , 𝜇Y , 𝜎2
X , 𝜎

2
Y , 𝜌)

X

Y

𝜌 = 0

X

Y

𝜌 > 0

Key fact: For bivariate normal, the conditional distribution Y |X = x is also normal.
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Conditional Distribution: Bivariate Normal

If (X ,Y ) is bivariate normal, then:

Conditional Distribution

Y |X = x ∼ N
(
𝜇Y + 𝜌

𝜎Y

𝜎X
(x − 𝜇X ), 𝜎2

Y (1 − 𝜌2)
)

Key observations:
• Conditional mean is linear in x : E[Y |X = x] = 𝜇Y + 𝜌

𝜎Y
𝜎X

(x − 𝜇X )
• Conditional variance is constant (doesn’t depend on x)
• If 𝜌 = 0, conditional mean = 𝜇Y (knowing X tells us nothing)

This is regression! The conditional mean is a line through (x, y) space.
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Preview: The Conditional Expectation Function

The conditional mean E[Y |X = x] is a function of x .

Conditional Expectation Function (CEF)

GY (x) = E[Y |X = x]

This is the function that maps each value of x to the expected value of Y given X = x .

For bivariate normal: GY (x) is linear
In general: GY (x) can be any shape!

Regression = Finding a good approximation to GY (x)
Wednesday: Why the CEF is the best predictor, and what regression is really doing.
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Blackwell’s Framing (Ch. 1)

Blackwell starts here: We observe (Xi,Yi) pairs.
The fundamental question: How does Y depend on X?

The answer: The conditional distribution fY |X (y |x)
The summary: The conditional expectation E[Y |X = x]

Blackwell’s Key Insight

“Regression is about predicting Y from X . The best possible prediction—if we knew the
joint distribution—would be E[Y |X ].”

We don’t know the joint distribution. We have data. That’s where statistics comes in.
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The Hierarchy of Distributions

Joint: f (x, y)

Marginal: fX (x) Marginal: fY (y)

Conditional: fY |X (y |x)

sum over y sum over x

÷fX (x)

The conditional distribution is where the action is for regression.
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The Core Formula

Conditional Distribution

fY |X (y |x) =
f (x, y)
fX (x)

In words: Take the joint distribution, zoom in on the slice where X = x , and renormalize.

This formula is the key to regression.
Everything else (marginals, independence) follows from this.
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Key Takeaways

1. Joint→Marginal: Sum/integrate out what you don’t care about

2. Joint→ Conditional: Divide by marginal to “zoom in” on a slice

3. The CEF E[Y |X = x] summarizes the conditional distribution

The big idea: Regression is about finding E[Y |X ] from data.

Wednesday: Why the CEF is the best predictor.
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For Wednesday

Topic: The Conditional Expectation Function

Reading:
• A&M §2.2.3–2.2.4 (CEF, LIE, best predictor property)
• Blackwell Ch. 1 (continue)

The CEF is the most important concept in the probability unit.
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