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Today’s Reading

Required

® Aronow & Miller, §1.3: Joint, marginal, conditional distributions (pp. 31-44)
® Blackwell, Ch. 1: Setting the stage for regression

Blackwell’s Chapter 1 introduces the CEF as the target of regression—this lecture builds
the foundations.
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The Big Picture

So far: Single random variables
® Distribution: f(x)
® Summary: E[X], Var(X)

Now: Two (or more) random variables together
® How are they jointly distributed?

® |f we know X, what does that tell us about Y?

This is where regression begins.
Regression asks: What’s E[ Y|X]? To answer that, we need conditional distributions.
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Joint Distribution: Discrete Case

Joint Probability Mass Function

For discrete random variables X and Y, the joint PMF is:
f(x,y) =Pr(X=xand Y =y)

Properties:

® f(x,y) >0forall x,y

« > D fley) =1
x y

The joint PMF tells us the probability of every (x, y) combination.

Gov 2001 Scott Cunningham

/20



Example: Education and Party ID

Survey data: Joint distribution of Education (X) and Party (Y)

Party (Y)
Education (X) | Dem Ind Rep | Row Total
No College 0.20 0.15 0.15 0.50
College 0.18 0.12 0.20 0.50
Col Total | 038 027 035| 1.00

Reading the table: f(No College, Dem) = 0.20
This means: 20% of the population has no college and identifies as Democrat.
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Marginal Distributions

Question: What if we only care about X (ignoring Y)?

¢
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Marginal PMF

The marginal distribution of X is obtained by summing over Y:

fe) = Y fxy) =Pr(X =x)
y

From our example:
® fx(No College) =0.20 + 0.15 + 0.15 = 0.50
* f((College) = 0.18 + 0.12 + 0.20 = 0.50

‘Marginal” because these appear in the margins of the table.
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Visualizing Marginalization

No Col

College

0.20 0.15 0.15 0.50
0.18 0.12 0.20 0.50
Dem Ind Rep

Sum across rows — marginal distribution of X
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Conditional Distribution

Key question: Given that we know X = x, what’s the distribution of Y?

Conditional PMF

The conditional distribution of Y given X = x is:

fxy) _PriX=xY=y)
fx(x) Pr(X =x)

frix(ylx) =

Intuition:
® 7Zoom in on the row where X = x

® Renormalize so probabilities sum to 1

This is the definitional formula for conditional distributions.
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Example: Party ID Given Education

What’s the distribution of Party among college graduates?

We need fy|x(y|College) for each party:

f(College,Dem) 0.18

Dem|Coll = =
fyix(Dem|College) fx(College) 0.50

=0.36

0.12
Ind|Coll =—=0.24
frix(Ind|College) 050

0.20
Rep|Coll = — =0.40
frix(Rep|College) = ==

Check: 0.36 + 0.24 + 0.40 = 1.00 v
Among college grads: 36% Dem, 24% Ind, 40% Rep
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Comparing Conditional Distributions

‘Dem Ind Rep

frix(yINo College) | 0.40 0.30 0.30
frix(y|College) 0.36  0.24 0.40

What do we learn?
® The two conditional distributions are different
® Knowing education level changes our beliefs about party ID
® The conditional distribution of Y depends on X

This dependence is what regression studies.
(These are stylized numbers for illustration, not real survey data.)
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Independence of Random Variables

When does knowing X tell us nothing about Y?

Definition: Independence
X and Y are independent, written X 1 Y, if:

fy) =fx(x) - fr(y) forallx,y

Equivalent conditions:
* fyix(ylx) = fy(y) for all x (conditioning doesn’t change anything)
®* Pr(X=x,Y=y)=Pr(X=x)-Pr(Y=y)

In our education/party example, X and Y are NOT independent—the conditional
distributions differ.
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Joint Distribution: Continuous Case

Joint Probability Density Function

For continuous X and Y, the joint PDF f(x, y) satisfies:

Pr(XeA,YeB):/

AX

f(xy) dx dy
B

Properties:
* f(xy) 20

) [:[:f(X»Y)dxdy:1

Marginal: fx(x) = /_O:of(x, y) dy

Conditional: fy|x(y|x) = J}i?xy))
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Example: Bivariate Normal

The most important continuous joint distribution

(X, Y) ~ N(ux, pry, 0%, 03, p)

p=0 p>0

Key fact: For bivariate normal, the conditional distribution Y|X = x is also normal.
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Conditional Distribution: Bivariate Normal

If (X, Y) is bivariate normal, then:

Conditional Distribution

Oy
YIX=x~N{py +pU—X(X_ﬂX), Uzy“ _Pz)

Key observations:
® Conditional mean is linear in x: E[Y|X = x| = py + p%(x — px)
® Conditional variance is constant (doesn’t depend on x)

® If p =0, conditional mean = piy (knowing X tells us nothing)

This is regression! The conditional mean is a line through (x, y) space.
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Preview: The Conditional Expectation Function

The conditional mean E[Y|X = x] is a function of x.

Conditional Expectation Function (CEF)
Gy(x) =E[Y|X =x]

This is the function that maps each value of x to the expected value of Y given X = x.

For bivariate normal: Gy(x) is linear
In general: Gy(x) can be any shape!

Regression = Finding a good approximation to Gy (x)
Wednesday: Why the CEF is the best predictor, and what regression is really doing.
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Blackwell’s Framing (Ch. 1)

Blackwell starts here: We observe (X, Y;) pairs.
The fundamental question: How does Y depend on X?
The answer: The conditional distribution fy|x(y|x)

The summary: The conditional expectation E[Y|X = x]

Blackwell’s Key Insight

“Regression is about predicting Y from X. The best possible prediction—if we knew the
joint distribution—would be E[ Y|X]”

We don’t know the joint distribution. We have data. That’s where statistics comes in.
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The Hierarchy of Distributions

sum over y.

Marginal: fx(x)

Joint: f(x,y)

+fx(x)

~

Conditional: fy|x(y|x)

um over x

Marginal: fy(y)

The conditional distribution is where the action is for regression.
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The Core Formula

Conditional Distribution

Gov 2001

f(xy)

frxyl) =225

In words: Take the joint distribution, zoom in on the slice where X = x, and renormalize.

This formula is the key to regression.
Everything else (marginals, independence) follows from this.
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Key Takeaways

1. Joint — Marginal: Sum/integrate out what you don’t care about
2. Joint — Conditional: Divide by marginal to “zoom in” on a slice

3. The CEF E[Y|X = x] summarizes the conditional distribution

The big idea: Regression is about finding E[ Y|X] from data.
Wednesday: Why the CEF is the best predictor.
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For Wednesday

Topic: The Conditional Expectation Function

Reading:
® A&M §2.2.3-2.2.4 (CEF, LIE, best predictor property)
® Blackwell Ch. 1 (continue)

The CEF is the most important concept in the probability unit.
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