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Today’s Reading

Required
® Aronow & Miller, §3.1-3.2.2: .1.D., random sampling, WLLN (pp. 91-99)
® Blackwell, Ch. 3: Asymptotics (pp. 51-78)

The bridge: Everything so far was about populations. Now we ask: how do we learn
about populations from samples?
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The Fundamental Problem of Statistics

What we want: Population parameters
® Population mean: p = E[Y]
® Population variance: 62 = Var(Y)
® Conditional expectation: E[ Y|X]

What we have: A sample of n observations

® Y., Y,...,Y,drawn from the population

The question: Can we use the sample to learn about the population?

Yes—under the right conditions. That’s what this week is about.
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The L1.D. Assumption

Independent and ldentically Distributed (I.1.D.)

The sample Y1, Y, ..., Y, is LLD. if:
1. Independent: Y; 1L Y; forall i # j
2. ldentically distributed: Each Y; has the same distribution F

Intuition: Each observation is a fresh, independent draw from the same population.
When does this hold?

® Simple random sampling with replacement

® Simple random sampling without replacement (approximately, if population is large)

® Not time series, clustered data, or convenience samples
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Random Sampling in Practice

Example: We want to know average income in Massachusetts.

Population: All adults in Massachusetts (about 5.5 million)
Parameter: ;1 = E[Income]
How to sample?

® Get a list of all adults (sampling frame)

® Randomly select n = 1,000 people

® Measure their income: Y1, Ya, ..., Y1000

If the sampling is truly random, the Y; are approximately L.I.D.

In practice, sampling is never perfect. But I.1.D. is a useful approximation.
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The Sample Mean as an Estimator

Natural idea: Estimate y with the sample mean:
- 1
Y = ; Z Y,‘

Key insight: Y is itself a random variable.

e Different samples give different values of Y
® Y has its own distribution (the sampling distribution)

® We want to understand this distribution

Statistics is about understanding how estimators behave across repeated samples.

Gov 2001 Scott Cunningham 6/22



Properties of the Sample Mean

Assume: Yy, ..., Y, LLD. with E[Y;] = g and Var(Y;) = o?

Expected Value of Y

_I n

E[Y] =E Y;
n

i=1

The sample mean is unbiased: On average, Y equals the true p.

This follows from linearity of expectation—no independence needed!
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Variance of the Sample Mean

_ 1<
Var(Y) = Var (E Z Y;)
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Key insight: Variance shrinks as n increases!
® With n =100: Var(Y) = ¢%/100
® With n = 10,000: Var(Y) = ¢2/10,000
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The Standard Error

Standard Error of the Mean

SE(Y) = SD(Y) =%
n

Interpretation: The typical distance of Y from y across repeated samples.

Example: If ¢ = 20,000 (income SD) and n = 400:

SE(F) = 20,000 _ 20,000 _
1400 20 '

The sample mean is typically within $1,000 of the true mean.

To cut SE in half, you need 4 times the sample size.
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Visualizing the Sampling Distribution

n=10 n =100

Both centered at ; (unbiased)
Larger n = tighter distribution around p

As n — oo, the distribution collapses to a spike at .
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The Law of Large Numbers: Intuition

The question: What happens to Y as n — c0?

We know:

® E[Y] = u (for any n)

® Var(Y) =c¢%/n— 0asn— oo

Together: Y gets closer and closer to p.

Informal Statement

Sample averages converge to population averages as sample size grows.

This is why statistics works!
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Convergence in Probability

Definition

Gov 2001

A sequence of random variables X;, converges in probability to a constant c, written
P
X, — ¢, if:

lim Pr(|X,—c| >¢) =0 foralle>0
n—oo

In words: The probability that X, is far from ¢ goes to zero.
Notation: We also write plim X, = ¢ (probability limit).

This is a weaker notion than “X), equals c¢ for large n"—there’s still randomness, but it gets
negligible.
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The Weak Law of Large Numbers

Weak Law of Large Numbers (WLLN)
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If Yy, Ys,...are LLD. with E[Y;] = p and Var(Y;) = 02 < oo, then:
1< p
Vo= Z Y: 5 u
i=1

In words: The sample mean converges in probability to the population mean.

This is foundational: It tells us that with enough data, we can learn the truth.
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Why the WLLN is True (Chebyshev’s Proof)

Chebyshev’s Inequality: For any random variable X with mean y and variance o*:

1
Pr(|X — u| > ko) < e

Apply to Y: E[Y] =y, Var(Y) = 0?/n

For any € > 0: ~
Var(Y) o?
=— =0

Pr(|Y — | > ¢) <
(¥ =l > 0) < == = 2

The bound goes to zero as n — co. QED.
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What the LLN Means in Practice

The LLN justifies what we do as researchers:

® We collect data (a sample)

® We compute statistics (like Y)
® We interpret them as estimates of population quantities

The LLN says this works: With enough data, our estimates get arbitrarily close to the

truth.
But: The LLN is asymptotic. It doesn’t tell us:

® How close we are for any finite n
® The shape of the sampling distribution
® How to construct confidence intervals
For that, we need the Central Limit Theorem (Wednesday).
15/22
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Consistency of Estimators

Definition: Consistency

An estimator é,, is consistent for 0 if:
AP
0,— 0 asn—

The LLN tells us: Y is a consistent estimator of .

Consistency is a minimal requirement:
® |f an estimator isn’t consistent, we’re in trouble
® More data doesn’t help us get the right answer

® Example: estimating p with Yy (just the first observation)—unbiased but not
consistent!
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The Analogy Principle

A general strategy for estimation:

Analogy Principle (Plug-in Principle)

Estimate population quantities by replacing population distributions with sample
distributions.

Examples:
e u=E[Y]=20=Y=13Y
« 2 =E[(Y-p)’] =8 = 15~ V)2

® E[Turnout|Party = D] = sample mean turnout among observed Democrats

The LLN guarantees these plug-in estimators are consistent.
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Example: Election Polling

Setup: Election between candidates A and B.
Parameter: p = Pr(vote for A) in the population
Sample: Survey n = 1,000 voters. Let Y; = 1if voter i supports A.
Estimator: p=Y = % 2. Yi (sample proportion)
Properties:

® E[p] = p (unbiased)

* Var(p) = 2522

* SE(p) =+/p(1-p)/n

® I[fp=05:SE = m = 0.0158 (about 1.6 percentage points)
Polls typically report “margin of error” ~ 2 x SE.
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What About Other Quantities?

The LLN applies to any average:
If g(Y) is any function with E[g(Y)] < oo:

=3 () S Eg()
i=1

Examples:
o 1y y2 L E[y2
o 13(¥i- V)25 var(y)
p
* 1Y XY, > E[XY]

This is why sample covariances, sample variances, etc. are consistent.
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Continuous Mapping Theorem

Useful result: Consistency is preserved by continuous functions.

Continuous Mapping Theorem

If X, LA c and g is continuous at ¢, then:
p
g(Xn) - g(c)

Example: We know Y LA H.
Since g(x) = x? is continuous:
v? 5 2

This lets us prove consistency for complex estimators built from simple pieces.
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Key Takeaways

1. L.L.D.: Observations are independent draws from the same distribution
2. Sample mean Y is unbiased: E[ Y] =y

3. Variance shrinks: Var(Y) = ¢%/n

4. LLN: )_/i,uasn—>oo

5. Consistency: Estimator converges to the true parameter

6. Analogy principle: Replace population with sample = consistent estimators

Next: The Central Limit Theorem—what the sampling distribution looks like.
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Looking Ahead

Wednesday: The Central Limit Theorem

® The LLN says Y — p—but what’s the shape of the distribution?
® CLT: For large n, Y is approximately normal

® This is the foundation of confidence intervals and hypothesis tests

Reading:
® A&M §3.2.3-3.2.4 (CLT, convergence concepts)
¢ Blackwell Ch. 3 (continue)
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