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Today’s Reading

Required
• Aronow & Miller, §3.1–3.2.2: I.I.D., random sampling, WLLN (pp. 91–99)
• Blackwell, Ch. 3: Asymptotics (pp. 51–78)

The bridge: Everything so far was about populations. Now we ask: how do we learn
about populations from samples?
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The Fundamental Problem of Statistics

What we want: Population parameters
• Population mean: 𝜇 = E[Y ]
• Population variance: 𝜎2 = Var(Y )
• Conditional expectation: E[Y |X ]

What we have: A sample of n observations
• Y1,Y2, . . . ,Yn drawn from the population

The question: Can we use the sample to learn about the population?

Yes—under the right conditions. That’s what this week is about.
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The I.I.D. Assumption

Independent and Identically Distributed (I.I.D.)
The sample Y1,Y2, . . . ,Yn is I.I.D. if:
1. Independent: Yi ⊥⊥ Yj for all i ≠ j

2. Identically distributed: Each Yi has the same distribution F

Intuition: Each observation is a fresh, independent draw from the same population.

When does this hold?
• Simple random sampling with replacement
• Simple random sampling without replacement (approximately, if population is large)
• Not time series, clustered data, or convenience samples
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Random Sampling in Practice

Example: We want to know average income in Massachusetts.

Population: All adults in Massachusetts (about 5.5 million)
Parameter: 𝜇 = E[Income]
How to sample?

• Get a list of all adults (sampling frame)
• Randomly select n = 1,000 people
• Measure their income: Y1,Y2, . . . ,Y1000

If the sampling is truly random, the Yi are approximately I.I.D.

In practice, sampling is never perfect. But I.I.D. is a useful approximation.
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The Sample Mean as an Estimator

Natural idea: Estimate 𝜇 with the sample mean:

Ȳ =
1
n

n∑︁
i=1

Yi

Key insight: Ȳ is itself a random variable.

• Different samples give different values of Ȳ
• Ȳ has its own distribution (the sampling distribution)
• We want to understand this distribution

Statistics is about understanding how estimators behave across repeated samples.
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Properties of the Sample Mean

Assume: Y1, . . . ,Yn I.I.D. with E[Yi] = 𝜇 and Var(Yi) = 𝜎2

Expected Value of Ȳ

E[Ȳ ] = E

[
1
n

n∑︁
i=1

Yi

]
=
1
n

n∑︁
i=1

E[Yi] =
1
n
· n𝜇 = 𝜇

The sample mean is unbiased: On average, Ȳ equals the true 𝜇.

This follows from linearity of expectation—no independence needed!
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Variance of the Sample Mean

Variance of Ȳ

Var(Ȳ ) = Var

(
1
n

n∑︁
i=1

Yi

)

=
1
n2

Var

(
n∑︁
i=1

Yi

)
=

1
n2

· n𝜎2 =
𝜎2

n

Key insight: Variance shrinks as n increases!
• With n = 100: Var(Ȳ ) = 𝜎2/100
• With n = 10,000: Var(Ȳ ) = 𝜎2/10,000

Larger samples⇒more precise estimatesGov 2001 Scott Cunningham 8 / 22



The Standard Error

Standard Error of the Mean

SE(Ȳ ) = SD(Ȳ ) = 𝜎
√
n

Interpretation: The typical distance of Ȳ from 𝜇 across repeated samples.

Example: If 𝜎 = 20,000 (income SD) and n = 400:

SE(Ȳ ) = 20,000
√
400

=
20,000
20

= 1,000

The sample mean is typically within $1,000 of the true mean.

To cut SE in half, you need 4 times the sample size.
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Visualizing the Sampling Distribution

n = 10

𝜇

n = 100

𝜇

Both centered at 𝜇 (unbiased)
Larger n⇒ tighter distribution around 𝜇

As n → ∞, the distribution collapses to a spike at 𝜇.
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The Law of Large Numbers: Intuition

The question: What happens to Ȳ as n → ∞?

We know:
• E[Ȳ ] = 𝜇 (for any n)
• Var(Ȳ ) = 𝜎2/n → 0 as n → ∞

Together: Ȳ gets closer and closer to 𝜇.

Informal Statement
Sample averages converge to population averages as sample size grows.

This is why statistics works!
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Convergence in Probability

Definition
A sequence of random variables Xn converges in probability to a constant c, written

Xn
p
−→ c, if:

lim
n→∞

Pr( |Xn − c | > 𝜀) = 0 for all 𝜀 > 0

In words: The probability that Xn is far from c goes to zero.

Notation: We also write plimXn = c (probability limit).

This is a weaker notion than “Xn equals c for large n”—there’s still randomness, but it gets
negligible.
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The Weak Law of Large Numbers

Weak Law of Large Numbers (WLLN)

If Y1,Y2, . . . are I.I.D. with E[Yi] = 𝜇 and Var(Yi) = 𝜎2 < ∞, then:

Ȳn =
1
n

n∑︁
i=1

Yi
p
−→ 𝜇

In words: The sample mean converges in probability to the population mean.

This is foundational: It tells us that with enough data, we can learn the truth.
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Why the WLLN is True (Chebyshev’s Proof)

Chebyshev’s Inequality: For any random variable X with mean 𝜇 and variance 𝜎2:

Pr( |X − 𝜇 | ≥ k𝜎) ≤ 1
k2

Apply to Ȳ : E[Ȳ ] = 𝜇, Var(Ȳ ) = 𝜎2/n
For any 𝜀 > 0:

Pr( |Ȳ − 𝜇 | ≥ 𝜀) ≤ Var(Ȳ )
𝜀2

=
𝜎2

n𝜀2
→ 0

The bound goes to zero as n → ∞. QED.
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What the LLN Means in Practice

The LLN justifies what we do as researchers:

• We collect data (a sample)
• We compute statistics (like Ȳ )
• We interpret them as estimates of population quantities

The LLN says this works: With enough data, our estimates get arbitrarily close to the
truth.

But: The LLN is asymptotic. It doesn’t tell us:
• How close we are for any finite n
• The shape of the sampling distribution
• How to construct confidence intervals

For that, we need the Central Limit Theorem (Wednesday).
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Consistency of Estimators

Definition: Consistency

An estimator 𝜃n is consistent for 𝜃 if:

𝜃n
p
−→ 𝜃 as n → ∞

The LLN tells us: Ȳ is a consistent estimator of 𝜇.

Consistency is a minimal requirement:
• If an estimator isn’t consistent, we’re in trouble
• More data doesn’t help us get the right answer
• Example: estimating 𝜇 with Y1 (just the first observation)—unbiased but not
consistent!
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The Analogy Principle

A general strategy for estimation:

Analogy Principle (Plug-in Principle)
Estimate population quantities by replacing population distributions with sample
distributions.

Examples:
• 𝜇 = E[Y ] ⇒ 𝜇 = Ȳ = 1

n

∑
Yi

• 𝜎2 = E[(Y − 𝜇)2] ⇒ 𝜎2 = 1
n

∑(Yi − Ȳ )2
• E[Turnout|Party = D] ⇒ sample mean turnout among observed Democrats

The LLN guarantees these plug-in estimators are consistent.
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Example: Election Polling

Setup: Election between candidates A and B.

Parameter: p = Pr(vote for A) in the population

Sample: Survey n = 1,000 voters. Let Yi = 1 if voter i supports A.

Estimator: p̂ = Ȳ = 1
n

∑
Yi (sample proportion)

Properties:
• E[p̂] = p (unbiased)

• Var(p̂) = p(1−p)
n

• SE(p̂) =
√︁
p(1 − p)/n

• If p = 0.5: SE =
√︁
0.25/1000 = 0.0158 (about 1.6 percentage points)

Polls typically report “margin of error” ≈ 2 × SE.

Gov 2001 Scott Cunningham 18 / 22



What About OtherQuantities?

The LLN applies to any average:

If g(Y ) is any function with E[g(Y )] < ∞:

1
n

n∑︁
i=1

g(Yi)
p
−→ E[g(Y )]

Examples:

• 1
n

∑
Y 2
i

p
−→ E[Y 2]

• 1
n

∑(Yi − Ȳ )2
p
−→ Var(Y )

• 1
n

∑
XiYi

p
−→ E[XY ]

This is why sample covariances, sample variances, etc. are consistent.
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Continuous Mapping Theorem

Useful result: Consistency is preserved by continuous functions.

Continuous Mapping Theorem

If Xn
p
−→ c and g is continuous at c, then:

g(Xn)
p
−→ g(c)

Example: We know Ȳ
p
−→ 𝜇.

Since g(x) = x2 is continuous:

Ȳ 2 p
−→ 𝜇2

This lets us prove consistency for complex estimators built from simple pieces.
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Key Takeaways

1. I.I.D.: Observations are independent draws from the same distribution

2. Sample mean Ȳ is unbiased: E[Ȳ ] = 𝜇

3. Variance shrinks: Var(Ȳ ) = 𝜎2/n

4. LLN: Ȳ
p
−→ 𝜇 as n → ∞

5. Consistency: Estimator converges to the true parameter

6. Analogy principle: Replace population with sample⇒ consistent estimators

Next: The Central Limit Theorem—what the sampling distribution looks like.
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Looking Ahead

Wednesday: The Central Limit Theorem

• The LLN says Ȳ → 𝜇—but what’s the shape of the distribution?
• CLT: For large n, Ȳ is approximately normal
• This is the foundation of confidence intervals and hypothesis tests

Reading:
• A&M §3.2.3–3.2.4 (CLT, convergence concepts)
• Blackwell Ch. 3 (continue)
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