

The Central Limit Theorem

Gov 2001: Quantitative Social Science Methods I

Scott Cunningham

Harvard University

Spring 2026

Today's Reading

Required

- Aronow & Miller, §3.2.3–3.2.4: CLT, convergence (pp. 99–110)
- Blackwell, Ch. 3: Asymptotics (continue)

The CLT is the most important theorem in statistics. It justifies everything we do with confidence intervals and hypothesis tests.

Where We Are

Monday: Law of Large Numbers

- $\bar{Y} \xrightarrow{P} \mu$ (sample mean converges to population mean)
- Tells us *where* the sampling distribution is centered

Today: Central Limit Theorem

- What is the *shape* of the sampling distribution?
- How can we quantify uncertainty about our estimates?

Answer: For large n , the sampling distribution is approximately **normal**.

A Remarkable Fact

Consider: You sample from a population with *any* distribution.

- Uniform, exponential, binomial, weird multimodal...anything

Compute the sample mean \bar{Y} .

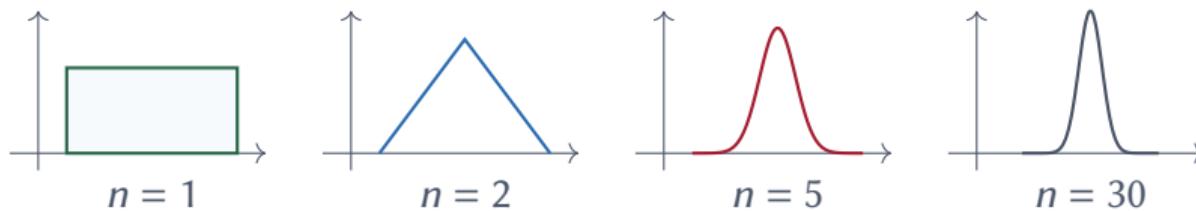
The CLT says: For large n , \bar{Y} is approximately normal.

No matter what the original distribution looks like!

This is why the normal distribution appears everywhere in statistics.

Visual Intuition: Averaging Makes Things Normal

Starting distribution: Uniform on $[0, 1]$



As n increases: The distribution of \bar{Y} becomes more and more bell-shaped.

Simulating the CLT in R: Setup

Let's see the CLT in action with a simulation.

```
# Load packages
library(ggplot2)

# Population parameters (Uniform distribution)
pop_mean <- 0.5      # E[X] for Uniform(0,1)
pop_var <- 1/12       # Var(X) for Uniform(0,1)

# Simulation settings
n_sims <- 10000      # Number of samples to draw
```

Key idea: We'll draw many samples, compute each mean, and look at the distribution of those means.

Simulating the CLT: The Core Loop

For each sample size, draw 10,000 samples and compute means:

```
# Function to simulate sampling distribution
simulate_clt <- function(n, n_sims = 10000) {
  # Draw n_sims samples, each of size n
  # Compute mean of each sample
  sample_means <- replicate(n_sims, mean(runif(n)))
  return(sample_means)
}

# Try different sample sizes
n_values <- c(1, 2, 5, 30)
results <- lapply(n_values, simulate_clt)
```

`replicate()` runs the expression `n_sims` times and collects results.

Visualizing the Results

```
# Plot histogram with normal overlay
ggplot(data.frame(xbar = sample_means), aes(x = xbar)) +
  geom_histogram(aes(y = after_stat(density)),
                 bins = 50, fill = "steelblue") +
  stat_function(fun = dnorm,
                args = list(mean = pop_mean,
                            sd = sqrt(pop_var/n)),
                color = "red", linewidth = 1.2) +
  labs(x = "Sample Mean", y = "Density",
       title = paste("n =", n))
```

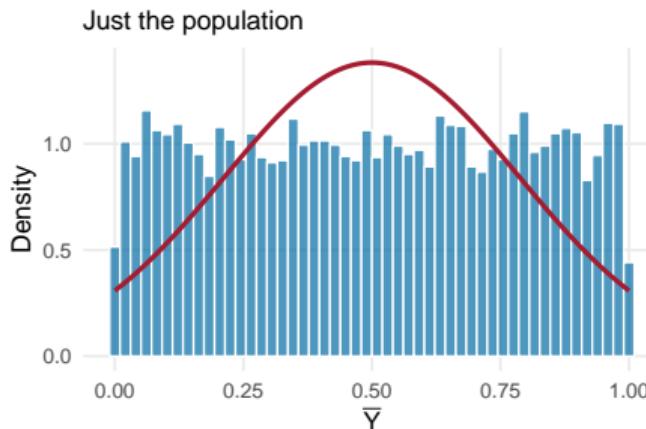
The red curve: What the CLT predicts— $N(\mu, \sigma^2/n)$.

The CLT in Action

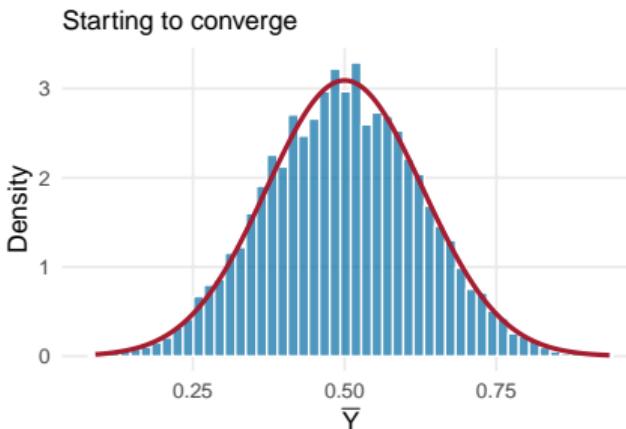
Central Limit Theorem in Action

Population: Uniform(0,1) | Red curve: Normal approximation

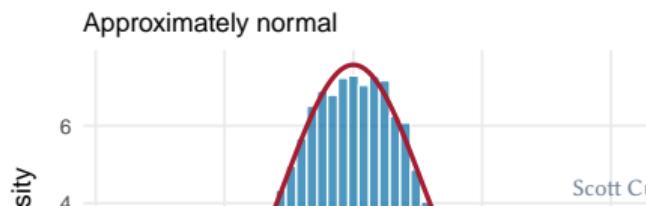
$n = 1$



$n = 5$



$n = 30$

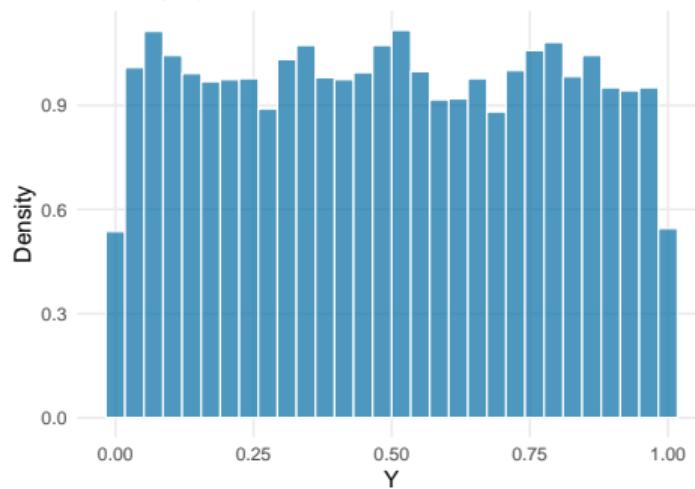


$n = 100$

Population vs. Sampling Distribution

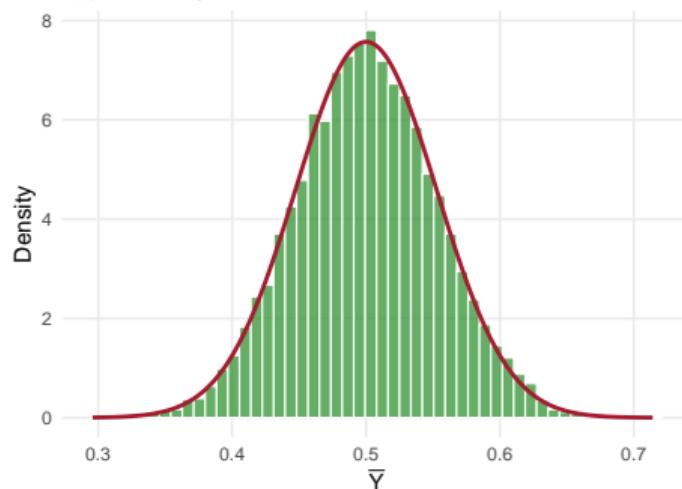
Population Distribution

Uniform(0,1) – NOT normal



Sampling Distribution ($n = 30$)

Approximately normal!



Left: The population is uniform (flat). **Right:** The sampling distribution of \bar{Y} (with $n = 30$) is approximately normal.

The Central Limit Theorem

Central Limit Theorem (CLT)

Let Y_1, Y_2, \dots be I.I.D. with $\mathbb{E}[Y_i] = \mu$ and $\text{Var}(Y_i) = \sigma^2 < \infty$.

Then:

$$\frac{\bar{Y} - \mu}{\sigma/\sqrt{n}} \xrightarrow{d} N(0, 1)$$

as $n \rightarrow \infty$.

Equivalent statement:

$$\sqrt{n}(\bar{Y} - \mu) \xrightarrow{d} N(0, \sigma^2)$$

The \xrightarrow{d} means “converges in distribution”—the CDF approaches the normal CDF.

What the CLT Says (Practically)

For large n :

$$\bar{Y} \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$

Or equivalently: \bar{Y} is approximately:

- Centered at μ
- With standard deviation σ/\sqrt{n}
- And normal (bell-shaped)

This lets us make probability statements about \bar{Y} !

Example: Presidential Approval Survey

Setup: Feeling thermometer (0–100 scale) toward the president.

- Population: $\mu = 45, \sigma = 30$
- Sample: $n = 900$ respondents

By CLT: $\bar{Y} \approx N\left(45, \frac{30^2}{900}\right) = N(45, 1)$

Standard error: $SE = 30/\sqrt{900} = 1$

Question: What's the probability \bar{Y} is within 2 points of μ ?

$$\begin{aligned}\Pr(|\bar{Y} - 45| < 2) &= \Pr\left(\left|\frac{\bar{Y} - 45}{1}\right| < 2\right) \\ &\approx \Pr(|Z| < 2) \approx 0.95\end{aligned}$$

There's a 95% chance the sample mean is within 2 points of the truth.

How Large is “Large Enough”?

The CLT is asymptotic—it’s exact only as $n \rightarrow \infty$.

In practice: How big does n need to be for the approximation to work?

Rules of thumb (rough heuristics, not guarantees):

- If the population is symmetric: $n \geq 20$ usually fine
- If the population is moderately skewed: $n \geq 30$
- If the population is heavily skewed: $n \geq 50$ or more
- For proportions near 0 or 1: need larger n

A&M simulations show even $n = 100$ can give poor coverage for some distributions.

Why Does the CLT Work? (Intuition)

The magic of averaging:

- Each Y_i deviates from μ by some random amount
- When we average many independent deviations, extremes cancel out
- Positive and negative deviations offset each other
- What remains is tightly concentrated around μ

The shape: Why specifically *normal*?

- The normal is the unique distribution that is “stable” under averaging
- Average of normals is normal; average of anything converges to normal

The formal proof uses characteristic functions (see A&M for references).

Preview: Confidence Intervals

The CLT enables inference:

Since $\bar{Y} \approx N(\mu, \sigma^2/n)$:

$$\Pr\left(-1.96 < \frac{\bar{Y} - \mu}{\sigma/\sqrt{n}} < 1.96\right) \approx 0.95$$

Rearranging:

$$\Pr\left(\bar{Y} - 1.96 \frac{\sigma}{\sqrt{n}} < \mu < \bar{Y} + 1.96 \frac{\sigma}{\sqrt{n}}\right) \approx 0.95$$

This is a 95% confidence interval!

$$\text{CI} : \bar{Y} \pm 1.96 \times \text{SE}$$

We'll formalize this next week.

Slutsky's Theorem: Why Estimated SEs Work

Problem: The CI formula uses σ , but we don't know σ !

Solution: Estimate it with $\hat{\sigma}$. But why is this valid?

Slutsky's Theorem (A&M Theorem 3.2.25)

If $T_n \xrightarrow{d} T$ and $S_n \xrightarrow{p} c$, then:

- $T_n + S_n \xrightarrow{d} T + c$
- $T_n \cdot S_n \xrightarrow{d} c \cdot T$
- $T_n / S_n \xrightarrow{d} T/c$ (if $c \neq 0$)

Application: $\hat{\sigma} \xrightarrow{p} \sigma$ by LLN, so:

$$\frac{\bar{Y} - \mu}{\hat{\sigma}/\sqrt{n}} \xrightarrow{d} N(0, 1)$$

The Delta Method (Brief)

What if we care about $g(\mu)$, not just μ ?

Delta Method

If $\sqrt{n}(\bar{Y} - \mu) \xrightarrow{d} N(0, \sigma^2)$ and g is differentiable at μ :

$$\sqrt{n}(g(\bar{Y}) - g(\mu)) \xrightarrow{d} N(0, [g'(\mu)]^2 \sigma^2)$$

In practice:

$$g(\bar{Y}) \approx N\left(g(\mu), [g'(\mu)]^2 \frac{\sigma^2}{n}\right)$$

Transformations of asymptotically normal estimators are also asymptotically normal.

Delta Method Example

Setup: Estimating the odds ratio.

Let p = probability of event, \hat{p} = sample proportion.

We want to estimate the **log odds**: $\theta = \log\left(\frac{p}{1-p}\right)$

By CLT: $\sqrt{n}(\hat{p} - p) \xrightarrow{d} N(0, p(1-p))$

Let $g(p) = \log(p/(1-p))$. Then $g'(p) = \frac{1}{p(1-p)}$.

By Delta Method:

$$\sqrt{n}(g(\hat{p}) - g(p)) \xrightarrow{d} N\left(0, \frac{1}{p(1-p)}\right)$$

This gives us standard errors for log odds ratios in logistic regression.

CLT for Sums

Sometimes we work with sums, not averages:

Let $S_n = \sum_{i=1}^n Y_i$. Then:

- $\mathbb{E}[S_n] = n\mu$
- $\text{Var}(S_n) = n\sigma^2$
- $\text{SD}(S_n) = \sqrt{n}\sigma$

CLT for sums:

$$\frac{S_n - n\mu}{\sqrt{n}\sigma} \xrightarrow{d} N(0, 1)$$

Or: $S_n \approx N(n\mu, n\sigma^2)$

This is just a rescaled version of the CLT for means.

Example: Polling Margin of Error

Setup: Poll of $n = 1,000$ voters. True support $p = 0.52$.

By CLT: $\hat{p} \approx N\left(0.52, \frac{0.52 \times 0.48}{1000}\right) = N(0.52, 0.00025)$

Standard error: $SE = \sqrt{0.00025} = 0.0158$

95% interval: $0.52 \pm 1.96 \times 0.0158 = [0.489, 0.551]$

Interpretation: 95% of polls would give \hat{p} in this range.

The “margin of error” reported in polls is typically $1.96 \times SE \approx 3\%$.

Special Case: Normal Approximation to Binomial

If $X \sim \text{Binomial}(n, p)$, then $X = \sum_{i=1}^n Y_i$ where $Y_i \sim \text{Bernoulli}(p)$.

By CLT:

$$X \approx N(np, np(1-p))$$

for large n .

Rule of thumb: Approximation is good if $np \geq 5$ and $n(1-p) \geq 5$.

Example: Flip a fair coin 100 times. What's $\Pr(X \geq 60)$?

$X \approx N(50, 25)$, so:

$$\Pr(X \geq 60) \approx \Pr\left(Z \geq \frac{60 - 50}{5}\right) = \Pr(Z \geq 2) \approx 0.023$$

When the CLT Doesn't Apply

The CLT requires:

- I.I.D. observations
- Finite variance: $\sigma^2 < \infty$

The CLT fails if:

- **Not I.I.D.:** Time series, clustered data, dependent observations
- **Infinite variance:** Heavy-tailed distributions (Cauchy, Pareto with $\alpha \leq 2$)
- **n too small:** Approximation isn't accurate yet

Extensions exist: CLT variants for dependent data, bootstrap methods for small samples.

Blackwell's Take (Chapter 3)

From Blackwell:

“The CLT tells us that regression coefficients are approximately normally distributed in large samples. This is why we can construct confidence intervals and perform hypothesis tests using the normal distribution.”

The connection:

- OLS coefficients are (complicated) averages
- Averages are approximately normal by CLT
- Therefore, OLS coefficients are approximately normal
- This justifies t-tests and confidence intervals for regression

Key Takeaways

1. **The CLT:** Sample means are approximately normal for large n

$$\bar{Y} \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$

2. **Regardless** of the original distribution (as long as $\sigma^2 < \infty$)
3. **The standardized version:** $\frac{\bar{Y} - \mu}{\sigma/\sqrt{n}} \approx N(0, 1)$
4. **Delta method:** Transformations preserve asymptotic normality
5. **This enables inference:** Confidence intervals, hypothesis tests

Next week: Estimation—bias, variance, consistency, and confidence intervals.

Looking Ahead

Week 6: Estimation and Properties of Estimators

- Estimand vs. estimator vs. estimate
- Bias and variance
- Mean squared error = $\text{Bias}^2 + \text{Variance}$
- Consistency
- Confidence intervals (finally!)

Reading:

- A&M §3.2.3 and §3.3.1 (estimation, confidence intervals)
- Blackwell Ch. 2 (model-based inference)