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Today’s Reading

® Aronow & Miller, §3.2.3: Estimation concepts, MSE (pp. 99-106)
® Blackwell, Ch. 2: Model-based inference (pp. 29-50)

Key question: What makes a good estimator?
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The Three-Level Distinction

Critical vocabulary:

¢ Estimand (0): The population quantity we want to know

> Example: Population mean y
> This is a fixed, unknown constant

~

® Estimator (0): A rule/formula applied to data
> Example: Sample mean Y = %Z Yi
> This is a random variable (depends on the sample)

® Estimate: The number you get when you apply the estimator to your data
> Example: y = 52,347
> This is a specific number

Estimands are targets. Estimators are procedures. Estimates are results.
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Example: Voter Turnout

Research question: What fraction of eligible voters turn out?

® Estimand: p = true turnout rate in the population

® Estimator: p = % ", Yi where Y; = 1if voter i turned out

® Data: Survey 1,000 voters, find 620 voted
® Estimate: ,’5 =620/1000 = 0.62

The estimand p is unknown. The estimate 0.62 is our best guess. The estimator tells us
how to compute that guess.
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What Makes a Good Estimator?

We want estimators that are:

1. Accurate on average: Not systematically off-target
2. Precise: Low variability from sample to sample
3. Convergent: Gets better with more data
These correspond to:
1. Unbiasedness (or low bias)

2. Low variance

3. Consistency
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Bias

Definition: Bias

The bias of an estimator 8 for parameter 0 is:
Bias(d) =E[6] - 0
Interpretation: How far off is the estimator on average?

* Bias(f) =0 = 0 is unbiased
® Bias(f) > 0 = 0 tends to overestimate
® Bias() < 0 = 0 tends to underestimate

Bias is about systematic error, not random error.
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Example: Sample Mean is Unbiased

Claim: Y is an unbiased estimator of .

Proof:
_I n
E[Y]=E|- ) Y;
n 4
i=1
] n
= E[Yl]
n 4
=1
1
=—-nu=pu
n

Therefore: Bias(Y) =E[Y]| —p=p-p=0.v

The sample mean hits the target on average.
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The Sample Variance: A Bias Story

Two candidate estimators for o

Option 1: 62 = 1 317 (Y, = Y)?
Option 2: 6% = ﬁ (Y= Y)?
Which is better?
It turns out:
* E[5?] = ”—;102 # o2 (biased!)
® E[6%] =0? (unbiased)

The n— 1 in the denominator corrects for using Y instead of p.
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Variance of an Estimator

Definition

Gov 2001

The variance of an estimator measures its spread:
Var(d) =E [(é - E[é])z]

Interpretation: How much does 6 vary from sample to sample?

For the sample mean:

0.2

Var(Y) = —

Standard error: SE(Y) = y/Var(Y) = \/iﬁ

SE is the bridge to confidence intervals—it measures precision in the same units as Y.
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The Bias-Variance Tradeoff

Low bias, low var Low bias, high var ~ High bias, low var  High bias, high var
(Best) (Worst)

Target = truth. Dots = estimates from different samples.
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Mean Squared Error

Definition: MSE

The Mean Squared Error combines bias and variance:
MSE(6) = E [(é - 0)2]
The MSE Decomposition
MSE () = Bias(6)? + Var()

Proof idea: Expand (QA -0)? = (QA - ]E[QA] + E[QA] - 0)? and take expectation.

MSE is the single metric that captures overall estimation error.
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Why MSE Matters

Unbiased isn’t everything:

Consider estimating p with:
® [i; = Y7 (just the first observation)

® 1, = Y (sample mean)

Both are unbiased! But:
® MSE(fi;) = Var(Y;) = o?
® MSE(fi,) = Var(Y) =0?/n

Y has much lower MSE for n > 1.

This is why we use all the data, not just one observation.
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Biased But Better?

Sometimes biased estimators have lower MSE:

Political science examples:
® Small-state polls: Shrink toward national average (low n states are noisy)
® Election forecasts: Bayesian priors stabilize predictions at cost of some bias
® Cross-national effects: Pool countries to reduce variance of country-level estimates

The idea: Accept a little bias to get much lower variance.

Bias?

° Variance
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Consistency (Recap)

Definition: Consistency

AL . AP
0, is consistent for 0 if 6, > 0 as n — .

Intuition: With enough data, we learn the truth.
Sufficient condition: If Bias(én) — 0 and Var(@A,,) — 0, then 0, is consistent.
Examples:

® Y is consistent for i (LLN)

e 52 =L 3 (Y;- Y)?is consistent for o

® OLS coefficients are consistent under standard assumptions
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Unbiased # Consistent (A&M Theorem 3.2.16)

Common misconception: “If it’s unbiased, it must converge to the truth.”

Counterexample: i = Y; (just the first observation)
e E[Yi] =uv (unbiased)
® Var(Y;) =c? (doesn’t shrink with n!)

® Not consistent: More data doesn’t help because we ignore it

The other direction: 52 = 1 Y(Y; - Y)?
® Biased: E[5?] = "—;102 # o2

® But consistent: ”;nT — lasn— oo

Consistency requires both bias — 0 and variance — 0.
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Hierarchy of Desirable Properties

In order of importance:

1. Consistency: Essential. Without it, more data doesn’t help.
2. Low MSE: Balances accuracy and precision.

3. Unbiasedness: Nice to have, but not at any cost.

Summary: Unbiased = Consistent, and Consistent =» Unbiased.

But consistent + asymptotically unbiased is typical for well-behaved estimators.
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The Plug-In Principle (A&M §3.2.6)

A unifying idea: Whatever you’d compute on the population, compute on the sample.

Plug-In Estimator

Replace the population distribution with the empirical distribution of your sample.

Examples:
® Population mean E[Y] — Sample mean Y
® Population variance Var(Y) — Sample variance
® Population quantile — Sample quantile

® E[Y|X = x] — Sample mean of Y among obs with X = x

LLN guarantees plug-in estimators are consistent.

Gov 2001 Scott Cunningham

17/19



Efficiency

Gov 2001

Definition: Efficiency

Among unbiased estimators, the one with lowest variance is called efficient.
Famous result: The Cramér-Rao Lower Bound gives a minimum possible variance for
unbiased estimators.

In regression: The Gauss-Markov theorem says OLS is the “Best Linear Unbiased
Estimator” (BLUE).

We’ll see Gauss-Markov when we get to regression.
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Summary: Properties of Estimators

Property Definition Meaning
Unbiased E[é] =0 Correct on average
Low variance Var(é) small Precise

Low MSE E[(0 - 0)?] small Accurate overall
Consistent 0, LNy Converges to truth
Efficient Lowest variance (among unbiased) Best in class

Remember: MSE = Bias? + Var
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Key Takeaways

1. Estimand (target) vs. estimator (procedure) vs. estimate (number)
2. Bias = systematic error: E[QA] -0

3. Variance = random error: Var(é)

4. MSE = Bias? + Variance (the master decomposition)

5. Consistency is about large-sample behavior

6. Unbiased isn’t always best—sometimes accept bias for lower variance

Next: Confidence intervals—quantifying uncertainty.
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Looking Ahead

Wednesday: Confidence Intervals

® How to construct a Cl using the CLT
® What a 95% Cl actually means (and doesn’t mean)
e Standard errors: estimated vs. known

® The t-distribution for small samples

Reading:
® A&M §3.3.1 (confidence intervals)
® Blackwell Ch. 4 (hypothesis tests—preview)
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