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Today’s Reading

Required
• Aronow & Miller, §3.2.3: Estimation concepts, MSE (pp. 99–106)
• Blackwell, Ch. 2: Model-based inference (pp. 29–50)

Key question: What makes a good estimator?
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The Three-Level Distinction

Critical vocabulary:

• Estimand (𝜃 ): The population quantity we want to know
▶ Example: Population mean 𝜇
▶ This is a fixed, unknown constant

• Estimator (𝜃 ): A rule/formula applied to data
▶ Example: Sample mean Ȳ = 1

n

∑
Yi

▶ This is a random variable (depends on the sample)

• Estimate: The number you get when you apply the estimator to your data
▶ Example: ȳ = 52,347
▶ This is a specific number

Estimands are targets. Estimators are procedures. Estimates are results.
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Example: Voter Turnout

Research question: What fraction of eligible voters turn out?

• Estimand: p = true turnout rate in the population

• Estimator: p̂ = 1
n

∑n
i=1 Yi where Yi = 1 if voter i turned out

• Data: Survey 1,000 voters, find 620 voted

• Estimate: p̂ = 620/1000 = 0.62

The estimand p is unknown. The estimate 0.62 is our best guess. The estimator tells us
how to compute that guess.
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What Makes a Good Estimator?

We want estimators that are:

1. Accurate on average: Not systematically off-target

2. Precise: Low variability from sample to sample

3. Convergent: Gets better with more data

These correspond to:
1. Unbiasedness (or low bias)

2. Low variance

3. Consistency
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Bias

Definition: Bias

The bias of an estimator 𝜃 for parameter 𝜃 is:

Bias(𝜃 ) = E[𝜃 ] − 𝜃

Interpretation: How far off is the estimator on average?

• Bias(𝜃 ) = 0⇒ 𝜃 is unbiased
• Bias(𝜃 ) > 0⇒ 𝜃 tends to overestimate
• Bias(𝜃 ) < 0⇒ 𝜃 tends to underestimate

Bias is about systematic error, not random error.
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Example: Sample Mean is Unbiased

Claim: Ȳ is an unbiased estimator of 𝜇.

Proof:

E[Ȳ ] = E

[
1
n

n∑︁
i=1

Yi

]
=
1
n

n∑︁
i=1

E[Yi]

=
1
n
· n𝜇 = 𝜇

Therefore: Bias(Ȳ ) = E[Ȳ ] − 𝜇 = 𝜇 − 𝜇 = 0. ✓

The sample mean hits the target on average.
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The Sample Variance: A Bias Story

Two candidate estimators for 𝜎2:

Option 1: 𝜎2 = 1
n

∑n
i=1(Yi − Ȳ )2

Option 2: 𝜎2 = 1
n−1

∑n
i=1(Yi − Ȳ )2

Which is better?
It turns out:

• E[𝜎2] = n−1
n 𝜎2 ≠ 𝜎2 (biased!)

• E[𝜎2] = 𝜎2 (unbiased)

The n − 1 in the denominator corrects for using Ȳ instead of 𝜇.
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Variance of an Estimator

Definition
The variance of an estimator measures its spread:

Var(𝜃 ) = E
[
(𝜃 − E[𝜃 ])2

]
Interpretation: How much does 𝜃 vary from sample to sample?

For the sample mean:

Var(Ȳ ) = 𝜎2

n

Standard error: SE(Ȳ ) =
√︁
Var(Ȳ ) = 𝜎√

n

SE is the bridge to confidence intervals—it measures precision in the same units as Ȳ .
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The Bias-Variance Tradeoff

Low bias, low var
(Best)

Low bias, high var High bias, low var High bias, high var
(Worst)

Target = truth. Dots = estimates from different samples.
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Mean Squared Error

Definition: MSE
TheMean Squared Error combines bias and variance:

MSE(𝜃 ) = E
[
(𝜃 − 𝜃 )2

]
The MSE Decomposition

MSE(𝜃 ) = Bias(𝜃 )2 + Var(𝜃 )

Proof idea: Expand (𝜃 − 𝜃 )2 = (𝜃 − E[𝜃 ] + E[𝜃 ] − 𝜃 )2 and take expectation.

MSE is the single metric that captures overall estimation error.
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Why MSE Matters

Unbiased isn’t everything:

Consider estimating 𝜇 with:
• 𝜇1 = Y1 (just the first observation)
• 𝜇2 = Ȳ (sample mean)

Both are unbiased! But:
• MSE(𝜇1) = Var(Y1) = 𝜎2

• MSE(𝜇2) = Var(Ȳ ) = 𝜎2/n

Ȳ has much lower MSE for n > 1.

This is why we use all the data, not just one observation.
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Biased But Better?

Sometimes biased estimators have lower MSE:

Political science examples:
• Small-state polls: Shrink toward national average (low n states are noisy)
• Election forecasts: Bayesian priors stabilize predictions at cost of some bias
• Cross-national effects: Pool countries to reduce variance of country-level estimates

The idea: Accept a little bias to get much lower variance.

Variance

Bias2

Unbiased

Biased

Biased estimator can be closer to the origin (lower MSE).
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Consistency (Recap)

Definition: Consistency

𝜃n is consistent for 𝜃 if 𝜃n
p
−→ 𝜃 as n → ∞.

Intuition: With enough data, we learn the truth.

Sufficient condition: If Bias(𝜃n) → 0 and Var(𝜃n) → 0, then 𝜃n is consistent.

Examples:
• Ȳ is consistent for 𝜇 (LLN)
• 𝜎2 = 1

n−1
∑(Yi − Ȳ )2 is consistent for 𝜎2

• OLS coefficients are consistent under standard assumptions
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Unbiased ≠ Consistent (A&M Theorem 3.2.16)

Common misconception: “If it’s unbiased, it must converge to the truth.”

Counterexample: 𝜇 = Y1 (just the first observation)
• E[Y1] = 𝜇 ✓ (unbiased)
• Var(Y1) = 𝜎2 (doesn’t shrink with n!)
• Not consistent: More data doesn’t help because we ignore it

The other direction: 𝜎2 = 1
n

∑(Yi − Ȳ )2
• Biased: E[𝜎2] = n−1

n 𝜎2 ≠ 𝜎2

• But consistent: n−1
n → 1 as n → ∞

Consistency requires both bias→ 0 and variance→ 0.
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Hierarchy of Desirable Properties

In order of importance:

1. Consistency: Essential. Without it, more data doesn’t help.

2. Low MSE: Balances accuracy and precision.

3. Unbiasedness: Nice to have, but not at any cost.

Summary: Unbiased⇏ Consistent, and Consistent⇏ Unbiased.

But consistent + asymptotically unbiased is typical for well-behaved estimators.
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The Plug-In Principle (A&M §3.2.6)

A unifying idea: Whatever you’d compute on the population, compute on the sample.

Plug-In Estimator
Replace the population distribution with the empirical distribution of your sample.

Examples:
• Population mean E[Y ] → Sample mean Ȳ
• Population variance Var(Y ) → Sample variance
• Population quantile → Sample quantile
• E[Y |X = x] → Sample mean of Y among obs with X = x

LLN guarantees plug-in estimators are consistent.
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Efficiency

Definition: Efficiency
Among unbiased estimators, the one with lowest variance is called efficient.

Famous result: The Cramér-Rao Lower Bound gives a minimum possible variance for
unbiased estimators.

In regression: The Gauss-Markov theorem says OLS is the “Best Linear Unbiased
Estimator” (BLUE).

We’ll see Gauss-Markov when we get to regression.
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Summary: Properties of Estimators

Property Definition Meaning

Unbiased E[𝜃 ] = 𝜃 Correct on average
Low variance Var(𝜃 ) small Precise
Low MSE E[(𝜃 − 𝜃 )2] small Accurate overall

Consistent 𝜃n
p
−→ 𝜃 Converges to truth

Efficient Lowest variance (among unbiased) Best in class

Remember: MSE = Bias2 +Var
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Key Takeaways

1. Estimand (target) vs. estimator (procedure) vs. estimate (number)

2. Bias = systematic error: E[𝜃 ] − 𝜃

3. Variance = random error: Var(𝜃 )

4. MSE = Bias2 + Variance (the master decomposition)

5. Consistency is about large-sample behavior

6. Unbiased isn’t always best—sometimes accept bias for lower variance

Next: Confidence intervals—quantifying uncertainty.
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Looking Ahead

Wednesday: Confidence Intervals

• How to construct a CI using the CLT
• What a 95% CI actually means (and doesn’t mean)
• Standard errors: estimated vs. known
• The t-distribution for small samples

Reading:
• A&M §3.3.1 (confidence intervals)
• Blackwell Ch. 4 (hypothesis tests—preview)
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