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Today’s Reading

Required
• Aronow & Miller, §3.3.3: Power (pp. 138–142)
• Aronow & Miller, §3.4.3: Bootstrap (pp. 145–150)
• Blackwell, Ch. 4 (finish)

Last probability lecture before the midterm!
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Two Types of Errors

When we make a decision, we might be wrong:

H0 True H0 False

Reject H0 Type I Error Correct!
Fail to Reject Correct! Type II Error

• Type I Error: False positive. Convicting an innocent person.
• Type II Error: False negative. Letting a guilty person go free.
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Type I Error Rate = 𝛼

Type I Error

𝛼 = Pr(Reject H0 | H0 true)

This is our significance level!
When we set 𝛼 = 0.05, we’re accepting a 5% chance of Type I error.

Why 5%?
• Tradition (thanks, Fisher)
• Balances false positives against power
• Other fields use different conventions (particle physics: 5𝜎)
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Type II Error and Power

Type II Error

𝛽 = Pr(Fail to reject H0 | H0 false)

Power

Power = 1 − 𝛽 = Pr(Reject H0 | H0 false)

Power = probability of detecting a real effect when one exists.
Higher power is better. We want to find effects that are really there.
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Visualizing Power

Under H0

z𝛼/2

Under H1

Power𝛽

Left: Distribution under H0. Right: Distribution under H1.
Power = green area. 𝛽 = red area.
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What Affects Power?

Power increases when:

1. Effect size is larger: Easier to detect big effects

2. Sample size is larger: More precise estimates, smaller SE

3. Variance is smaller: Less noise, clearer signal

4. 𝛼 is larger: More willing to reject⇒ more rejections

The tradeoff: Increasing 𝛼 increases power but also Type I error.
We typically fix 𝛼 = 0.05 and increase n to get power.
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Power Calculation Example

Setup: Testing H0 : 𝜇 = 0 vs. H1 : 𝜇 ≠ 0
True effect: 𝜇 = 0.5, Standard deviation: 𝜎 = 2, Sample size: n = 64

Standard error: SE = 𝜎/
√
n = 2/8 = 0.25

Under H0: Reject if |Ȳ | > 1.96 × 0.25 = 0.49

Under H1 (true 𝜇 = 0.5):

Power = Pr( |Ȳ | > 0.49 | 𝜇 = 0.5)
≈ Pr(Ȳ > 0.49) (ignoring left tail)

= Pr

(
Z >

0.49 − 0.5
0.25

)
= Pr(Z > −0.04) ≈ 0.52

Only 52% power—we’d miss this effect half the time!
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Power and Sample Size Planning

Before running a study: Calculate required sample size for adequate power.

Convention: Target power = 0.80 (80%)

Formula (for two-sided test of mean):

n =

( (z𝛼/2 + z𝛽 ) · 𝜎
𝜇1 − 𝜇0

)2
where z𝛽 is the z-value for desired power (e.g., z0.20 = 0.84 for 80% power).

Example: 𝜎 = 2, 𝜇1 − 𝜇0 = 0.5, 80% power:

n =

(
(1.96 + 0.84) × 2

0.5

)2
= (11.2)2 ≈ 126
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Power in Political Science Research

Many studies are underpowered:
• Median power in social science: ∼35% (Button et al., 2013)
• Small effects + limited samples = low power

Political science examples:
• GOTV effects (∼2–3 pp) need n ≈ 5,000+ for 80% power
• Survey experiments with many conditions: power drops rapidly
• Cross-national studies: 30 countries⇒ low power for small effects

Best practice: Power analysis before collecting data.
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Pre-Study Power Analysis: The Workflow

Before you collect data, specify:

1. Expected effect size: Based on prior literature or minimum meaningful effect

2. Expected variability: From prior studies or pilot data

3. Target power: Usually 80% (sometimes 90% for expensive studies)

4. Alpha level: Usually 0.05

5. Calculate required n: Using formulas or simulation

Key point: You must specify the effect size before seeing data.

This is why pre-registration matters—it forces you to commit to these choices.
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Example: Choosing Effect Size from Prior Literature

Research question: Does door-to-door canvassing increase voter turnout?
Step 1: Review the literature for effect sizes

Study Design Effect

Gerber & Green (2000) Door-to-door, New Haven 8.7 pp
Green, Gerber, Nickerson (2003) Meta of 6 RCTs 7–10 pp
Arceneaux (2005) Low-salience election 2.5 pp
Nickerson (2008) Denver, Minneapolis 2.1 pp
Green & Gerber (2015) Book summary 2–5 pp

Effects range from 2–10 pp depending on election type and population.
Decision: Target detecting a 3 pp effect (conservative estimate).
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Choosing Baseline and Variability

Step 2: Estimate control group outcome and variability

Control group turnout: Where does this come from?
• Historical data from similar elections in similar populations
• For midterm election in targeted population: ≈ 40%

Variability: For binary outcomes (voted/didn’t vote)
• 𝜎 =

√︁
p(1 − p) — determined by baseline rate

• At p = 0.40: 𝜎 =
√
0.40 × 0.60 = 0.49

• At p = 0.50: 𝜎 = 0.50 (maximum variance)

Unlike continuous outcomes, variance is determined by the mean for binary data.
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Calculating Required Sample Size

Step 3: Calculate required n

With our endogenous choices:
• Expected effect: 3 percentage points (0.03)
• Baseline turnout: 40% (so 𝜎 ≈ 0.49)
• Target power: 80%
• Alpha: 0.05 (two-sided)

Formula:

nper group = 2 ×
( (z𝛼/2 + z𝛽 ) · 𝜎

𝛿

)2
= 2 ×

(
(1.96 + 0.84) × 0.49

0.03

)2
nper group ≈ 2,090 ⇒ ntotal ≈ 4,180

This is why GOTV experiments are expensive!
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What If We Can’t Find Prior Literature?

Options when effect size is unknown:

1. Minimum Detectable Effect (MDE):
• Ask: “What’s the smallest effect worth detecting?”
• If a 1 pp effect isn’t policy-relevant, don’t power for it

2. Pilot study:
• Small-scale version to estimate effect size and variance
• Use those estimates for power analysis of main study

3. Cohen’s conventions (use cautiously):
• Small: d = 0.2, Medium: d = 0.5, Large: d = 0.8
• These are arbitrary and not field-specific

Warning: Never use your own data to choose effect size, then test with same data!
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Power Curves: GOTV Experiment
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If true effect is only 2 pp, power drops to ∼47%. See 07b_power.R (∼20 sec).
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When CLT Doesn’t Apply

The CLT requires:
• I.I.D. observations
• Finite variance
• “Large enough” n

What if:
• Sample size is small?
• Distribution is highly skewed?
• We want inference for a complicated estimator (median, ratio, etc.)?

Solution: The Bootstrap
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The Bootstrap: Bradley Efron (1979)

Origin: Bradley Efron introduced the bootstrap in his 1979 paper “Bootstrap Methods:
Another Look at the Jackknife.”

The name: Inspired by Baron Munchausen, who escaped a swamp by pulling himself up
by his own bootstraps. Efron: “With nothing to lever yourself against, you can use the
data itself to tell you more about the data.”

Why it matters:
• One of the first computer-intensive statistical methods
• Replaced complex algebraic derivations with simulations
• Referenced in 200,000+ peer-reviewed articles since 1980

Recognition: Efron received the 2018 International Prize in Statistics (“best statistical
pain reliever ever produced”) and the 2005 National Medal of Science.
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The Bootstrap Idea

The problem: We want to know the sampling distribution of 𝜃 , but we only have one
sample.

The insight: Treat the sample as a “stand-in” for the population.

The procedure:
1. Resample with replacement from your data

2. Compute 𝜃 on the resample

3. Repeat many times (e.g., 10,000)

4. Use the distribution of resampled 𝜃s as the sampling distribution
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What Does “With Replacement” Mean?

Original data: {A, B, C, D, E} (5 observations)

Sampling WITHOUT replacement (like dealing cards):
• Draw one, set it aside, draw another
• Each observation appears exactly once
• Sample of 5: {C, A, E, B, D} — just a reordering!
• Can’t learn anything new about variability

Sampling WITH replacement (like rolling dice):
• Draw one, put it back, draw again
• Same observation can appear multiple times
• Sample of 5: {A, A, C, C, E} — A and C appear twice, B and D absent
• Creates genuine variation across bootstrap samples

With replacement⇒ each bootstrap sample is different⇒ we can estimate variability.
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Bootstrap Procedure

Original sample: Y1,Y2, . . . ,Yn

For b = 1, 2, . . . ,B:

1. Draw a sample of size n with replacement from (Y1, . . . ,Yn)
2. Call this Y ∗b

1 ,Y ∗b
2 , . . . ,Y ∗b

n

3. Compute 𝜃 ∗b on this bootstrap sample

Result: 𝜃 ∗1, 𝜃 ∗2, . . . , 𝜃 ∗B

Use this distribution to:
• Estimate SE: ŜE = (𝜃 ∗1, . . . , 𝜃 ∗B)
• Construct CI: Use percentiles (e.g., 2.5th and 97.5th)
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Bootstrap Example: Median Income

Data: 50 income observations. Median = $52,000.

Problem: No simple formula for SE of the median!

Bootstrap:
1. Resample 50 incomes with replacement

2. Compute median of resample

3. Repeat 10,000 times

Result: 10,000 bootstrap medians

• Bootstrap SE: $3,200
• 95% CI: [$46,000, $58,500] (2.5th and 97.5th percentiles)
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Bootstrap Confidence Intervals

Two common methods:

1. Percentile method (simplest):

CI =
[
𝜃 ∗(𝛼/2) , 𝜃

∗
(1−𝛼/2)

]
Use the 𝛼/2 and (1 − 𝛼/2) quantiles of bootstrap distribution.

2. Normal approximation:
CI = 𝜃 ± z𝛼/2 × ŜEboot

Use bootstrap SE with normal critical values.

The percentile method is more robust to skewness.
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Why Does Bootstrap Work?

Key insight: The relationship between

Sample ↔ Population

is similar to the relationship between

Bootstrap sample ↔ Original sample

For large n:
• The sample distribution approximates the population distribution
• Resampling from the sample mimics resampling from the population
• The bootstrap distribution approximates the true sampling distribution

This is the “plug-in principle” applied to distributions.
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When Bootstrap Works (and Doesn’t)

Bootstrap works well for:
• Means, medians, quantiles
• Regression coefficients
• Most “smooth” functions of the data

Bootstrap can fail for:
• Extremes (max, min)
• Very small samples
• Non-I.I.D. data (need modified versions)
• Parameters on the boundary (e.g., variance = 0)

Rule of thumb: If the estimator is consistent and asymptotically normal, bootstrap
usually works.
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Bootstrap in R

Simple implementation:
# Original statistic
theta_hat <- median(data)
# Bootstrap
B <- 10000
theta_boot <- numeric(B)
for (b in 1:B) {

boot_sample <- sample(data, replace = TRUE)
theta_boot[b] <- median(boot_sample)

}
# SE and CI
se_boot <- sd(theta_boot)

ci_boot <- quantile(theta_boot, c(0.025, 0.975))

Or use the boot package for more features.
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Summary: Errors and Power

Concept Definition Typical Value

Type I Error (𝛼) Pr(reject H0 | H0 true) 0.05
Type II Error (𝛽) Pr(fail to reject | H0 false) 0.20
Power 1 − 𝛽 0.80

Power depends on: Effect size, sample size, variance, 𝛼
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Key Takeaways

1. Type I error = false positive; controlled by 𝛼

2. Type II error = false negative; related to power

3. Power = probability of detecting a real effect

4. Plan sample size to achieve adequate power (usually 80%)

5. Bootstrap provides inference when CLT is questionable

6. Bootstrap CI: Resample, compute statistic, use percentiles
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Midterm Preview

Midterm Exam: Covers Weeks 1–7

Topics:
• Probability: axioms, conditional probability, Bayes’ Rule
• Random variables: PMF, PDF, CDF, expectation, variance
• Joint distributions, conditional expectation, CEF
• Sampling distributions, LLN, CLT
• Estimation: bias, variance, MSE, consistency
• Confidence intervals and hypothesis testing

After spring break: We start regression!
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R Code: Power Analysis

Goal: Understand how power depends on effect size and sample size.

Topics covered:
• Computing power for different scenarios
• Power curves across effect sizes
• Sample size determination

Code and figures available in the course repository.
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Power Calculation Function

# Power for a z-test
calculate_power <- function(d, n, alpha = 0.05) {
se <- 1 / sqrt(n) # Assuming sigma = 1
z_crit <- qnorm(1 - alpha/2)

# Power = P(reject | H1 true)
power <- pnorm(-z_crit + d * sqrt(n)) +

pnorm(-z_crit - d * sqrt(n))
return(power)

}

# Example: d = 0.3, n = 100
calculate_power(d = 0.3, n = 100) # About 85%
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Power Increases with Effect Size

80% power
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With n = 100, we need d ≈ 0.28 for 80% power.
Gov 2001 Scott Cunningham 32 / 33



Power Curves for Different Effect Sizes
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Power Curves for Different Effect Sizes

Small effects need much larger samples to detect reliably.
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Sample Size for 80% Power

# Find required n for target power
find_sample_size <- function(target_power, d, alpha = 0.05) {
for (n in 5:2000) {
if (calculate_power(d, n, alpha) >= target_power) {
return(n)

}
}
return(NA)

}

# Required n for different effect sizes at 80% power
find_sample_size(0.80, d = 0.2) # Small effect
find_sample_size(0.80, d = 0.5) # Medium effect
find_sample_size(0.80, d = 0.8) # Large effect
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Looking Ahead

Spring Break: March 15–23

Week 8: What Is Regression?
• The Best Linear Predictor (BLP)
• OLS as sample BLP
• Connection to CEF

Reading:
• Blackwell Ch. 5
• A&M §2.2.4
• Angrist & Pischke Ch. 3.1

The second half of the course: applying what we’ve learned to regression.
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