Power and Bootstrap
Gov 2001: Quantitative Social Science Methods |

Scott Cunningham
Harvard University

Spring 2026



Today’s Reading

® Aronow & Miller, §3.3.3: Power (pp. 138—142)
® Aronow & Miller, §3.4.3: Bootstrap (pp. 145-150)
¢ Blackwell, Ch. 4 (finish)

Last probability lecture before the midterm!
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Two Types of Errors

When we make a decision, we might be wrong:

‘ Hy True H, False

Reject Hy Type | Error Correct!
Fail to Reject Correct! Type Il Error

® Type | Error: False positive. Convicting an innocent person.

® Type Il Error: False negative. Letting a guilty person go free.

Gov 2001 Scott Cunningham 3/33



Type | Error Rate = o

Type | Error

a = Pr(Reject Hy | Hy true)

This is our significance level!
When we set & = 0.05, we’re accepting a 5% chance of Type | error.
Why 5%?

® Tradition (thanks, Fisher)

® Balances false positives against power

® Other fields use different conventions (particle physics: 50)
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Type Il Error and Power

Type Il Error

p = Pr(Fail to reject Hy | Ho false)

Power

Power = 1— f = Pr(Reject Hy | H, false)

Power = probability of detecting a real effect when one exists.
Higher power is better. We want to find effects that are really there.
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Visualizing Power

Left: Distribution under Hp. Right: Distribution under H;.
Power = green area. f = red area.
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What Affects Power?

Power increases when:
1. Effect size is larger: Easier to detect big effects
2. Sample size is larger: More precise estimates, smaller SE
3. Variance is smaller: Less noise, clearer signal

4. «a is larger: More willing to reject = more rejections

The tradeoff: Increasing « increases power but also Type I error.
We typically fix @ = 0.05 and increase n to get power.
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Power Calculation Example

Setup: Testing Hy : p=0vs. Hy: p #0

True effect: 4 = 0.5, Standard deviation: o = 2, Sample size: n = 64
Standard error: SE = 6/4/n=2/8 = 0.25

Under Hy: Reject if | Y] > 1.96 x 0.25 = 0.49

Under H; (true g = 0.5):

Power = Pr(|Y| > 0.49 | 1 = 0.5)
~ Pr(Y > 0.49) (ignoring left tail)
0.49 -0.5

= Pr(Z >
0.25

) =Pr(Z > —0.04) ~ 0.52

Only 52% power—we’d miss this effect half the time!
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Power and Sample Size Planning

Before running a study: Calculate required sample size for adequate power.
Convention: Target power = 0.80 (80%)
Formula (for two-sided test of mean):
. ((Za/z + Zﬁ) . 0)2
H1 = Ho
where zg is the z-value for desired power (e.g., z0.20 = 0.84 for 80% power).

Example: 0 = 2, iy — py = 0.5, 80% power:

(1.96 +0.84) x 2
n=
0.5

2
) =(11.2)%2 =~ 126
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Power in Political Science Research

Many studies are underpowered:
® Median power in social science: ~35% (Button et al., 2013)

® Small effects + limited samples = low power

Political science examples:
® GOTV effects (~2-3 pp) need n = 5,000+ for 80% power
® Survey experiments with many conditions: power drops rapidly

® Cross-national studies: 30 countries = low power for small effects

Best practice: Power analysis before collecting data.

Gov 2001 Scott Cunningham 10/33



Pre-Study Power Analysis: The Workflow

Before you collect data, specify:

1.

2
3
4.
5

Expected effect size: Based on prior literature or minimum meaningful effect

. Expected variability: From prior studies or pilot data

. Target power: Usually 80% (sometimes 90% for expensive studies)

Alpha level: Usually 0.05

. Calculate required n: Using formulas or simulation

Key point: You must specify the effect size before seeing data.

This is why pre-registration matters—it forces you to commit to these choices.
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Example: Choosing Effect Size from Prior Literature

Research question: Does door-to-door canvassing increase voter turnout?

Step 1: Review the literature for effect sizes

Study Design Effect
Gerber & Green (2000) Door-to-door, New Haven 8.7 pp
Green, Gerber, Nickerson (2003)  Meta of 6 RCTs 7-10 pp
Arceneaux (2005) Low-salience election 2.5 pp
Nickerson (2008) Denver, Minneapolis 2.1pp
Green & Gerber (2015) Book summary 2-5 pp

Effects range from 2—-10 pp depending on election type and population.
Decision: Target detecting a 3 pp effect (conservative estimate).
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Choosing Baseline and Variability

Step 2: Estimate control group outcome and variability

Control group turnout: Where does this come from?
® Historical data from similar elections in similar populations

® For midterm election in targeted population: ~ 40%

Variability: For binary outcomes (voted/didn’t vote)

® g =4/p(1— p) — determined by baseline rate
® At p=0.40: 0 = V0.40 X 0.60 = 0.49

® At p =0.50: 0 = 0.50 (maximum variance)

Unlike continuous outcomes, variance is determined by the mean for binary data.
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Calculating Required Sample Size

Step 3: Calculate required n

With our endogenous choices:
® Expected effect: 3 percentage points (0.03)
® Baseline turnout: 40% (so o =~ 0.49)
® Target power: 80%

Alpha: 0.05 (two-sided)

Formula:

. [ Fat ) o 2:2>< (1.96 + 0.84) x 0.49 )
per group 5 003

Nper group = 2,090 = ngoral = 4,180

This is why GOTV experiments are expensive!
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What If We Can’t Find Prior Literature?

Options when effect size is unknown:

1. Minimum Detectable Effect (MDE):

® Ask: “What’s the smallest effect worth detecting?”
® If a 1 pp effect isn’t policy-relevant, don’t power for it

2. Pilot study:

® Small-scale version to estimate effect size and variance
® Use those estimates for power analysis of main study

3. Cohen’s conventions (use cautiously):
® Small: d = 0.2, Medium: d = 0.5, Large: d = 0.8
® These are arbitrary and not field-specific

Warning: Never use your own data to choose effect size, then test with same data!
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Power Curves: GOTV Experiment

Power Curves for GOTV Experiment
(Baseline turnout = 40%, alpha = 0.05)

Statistical Power

c

0.0
1

80% power

Effect Size

2 pp effect
2.5 pp effect
3 pp effect
3.5 pp effect

4 pp effect

T T T
2000 4000 6000

Sample Size (per treatment arm)

If true effect is only 2 pp, power drops to ~47%. See @7b_power .R (~20 sec).
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When CLT Doesn’t Apply

The CLT requires:
e ||.D. observations
® Finite variance

® “Large enough” n

What if:
® Sample size is small?
® Distribution is highly skewed?

® We want inference for a complicated estimator (median, ratio, etc.)?

Solution: The Bootstrap
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The Bootstrap: Bradley Efron (1979)

Origin: Bradley Efron introduced the bootstrap in his 1979 paper “Bootstrap Methods:
Another Look at the Jackknife”

The name: Inspired by Baron Munchausen, who escaped a swamp by pulling himself up
by his own bootstraps. Efron: “With nothing to lever yourself against, you can use the
data itself to tell you more about the data”

Why it matters:
® One of the first computer-intensive statistical methods
® Replaced complex algebraic derivations with simulations
® Referenced in 200,000+ peer-reviewed articles since 1980

Recognition: Efron received the 2018 International Prize in Statistics (“best statistical
pain reliever ever produced”) and the 2005 National Medal of Science.
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The Bootstrap Idea

The problem: We want to know the sampling distribution of 0, but we only have one
sample.

The insight: Treat the sample as a “stand-in” for the population.

The procedure:
1. Resample with replacement from your data
2. Compute 6 on the resample
3. Repeat many times (e.g., 10,000)

4. Use the distribution of resampled Os as the sampling distribution
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What Does “With Replacement” Mean?

Original data: {A, B, C, D, E} (5 observations)

Sampling WITHOUT replacement (like dealing cards):
® Draw one, set it aside, draw another
® Each observation appears exactly once
® Sample of 5: {C, A, E, B, D} — just a reordering!
® Can’t learn anything new about variability

Sampling WITH replacement (like rolling dice):
® Draw one, put it back, draw again
® Same observation can appear multiple times
e Sample of 5: {A, A, C, C, E} — A and C appear twice, B and D absent
® Creates genuine variation across bootstrap samples

With replacement = each bootstrap sample is different = we can estimate variability.
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Bootstrap Procedure

Original sample: Y1, Y5,..., Y,
Forb=12...,B:

1. Draw a sample of size n with replacement from (Y7,...

. b y/xb xb
2. Call this Y72, Y3°,..., Y}
3. Compute 8*? on this bootstrap sample
Result: QA“, 9A*2, . +8

Use this distribution to:
® Estimate SE: SE = (QA’”, .. .,QA*B)
® Construct Cl: Use percentiles (e.g., 2.5th and 97.5th)
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Bootstrap Example: Median Income

Data: 50 income observations. Median = $52,000.
Problem: No simple formula for SE of the median!

Bootstrap:
1. Resample 50 incomes with replacement
2. Compute median of resample
3. Repeat 10,000 times

Result: 10,000 bootstrap medians

® Bootstrap SE: $3,200
® 95% Cl: [$46,000, $58,500] (2.5th and 97.5th percentiles)
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Bootstrap Confidence Intervals

Two common methods:

1. Percentile method (simplest):

Cl= 002 1-ap2)

Use the @/2 and (1 — @/2) quantiles of bootstrap distribution.

2. Normal approximation:
Cl=60« Zgj2 X SEboot

Use bootstrap SE with normal critical values.

The percentile method is more robust to skewness.
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Why Does Bootstrap Work?

Key insight: The relationship between

Sample < Population

is similar to the relationship between

Bootstrap sample <> Original sample

For large n:

® The sample distribution approximates the population distribution

® Resampling from the sample mimics resampling from the population

® The bootstrap distribution approximates the true sampling distribution
This is the “plug-in principle” applied to distributions.
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When Bootstrap Works (and Doesn’t)

Bootstrap works well for:
® Means, medians, quantiles
® Regression coefficients

® Most “smooth” functions of the data

Bootstrap can fail for:

® Extremes (max, min)

Very small samples

Non-L1.D. data (need modified versions)

Parameters on the boundary (e.g., variance = 0)

Rule of thumb: If the estimator is consistent and asymptotically normal, bootstrap
usually works.
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Bootstrap in R

Simple implementation:

# Original statistic

theta_hat <- median(data)

# Bootstrap

B <- 10000

theta_boot <- numeric(B)

for (b in 1:B) {
boot_sample <- sample(data, replace = TRUE)
theta_boot[b] <- median(boot_sample)

3

# SE and CI

se_boot <- sd(theta_boot)

ci_boot <- quantile(theta_boot, c(0.025, 0.975))

Or use the boot package for more features.
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Summary: Errors and Power

Concept Definition Typical Value
Type I Error («)  Pr(reject Hy | Hy true) 0.05
Type Il Error () Pr(fail to reject | Hy false) 0.20
Power 1-p 0.80

Power depends on: Effect size, sample size, variance, «
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Key Takeaways

> LN

o

Type | error = false positive; controlled by «

Type Il error = false negative; related to power

Power = probability of detecting a real effect

Plan sample size to achieve adequate power (usually 80%)
Bootstrap provides inference when CLT is questionable

Bootstrap Cl: Resample, compute statistic, use percentiles
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Midterm Preview

Midterm Exam: Covers Weeks 1-7
Topics:

® Probability: axioms, conditional probability, Bayes’ Rule

Random variables: PMF, PDF, CDF, expectation, variance

Joint distributions, conditional expectation, CEF
Sampling distributions, LLN, CLT

Estimation: bias, variance, MSE, consistency

Confidence intervals and hypothesis testing

After spring break: We start regression!
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R Code: Power Analysis

Goal: Understand how power depends on effect size and sample size.

Topics covered:
® Computing power for different scenarios
® Power curves across effect sizes

® Sample size determination

Code and figures available in the course repository.
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Power Calculation Function

# Power for a z-test

calculate_power <- function(d, n, alpha = 0.05) {
se <- 1 / sqrt(n) # Assuming sigma = 1
z_crit <- gnorm(1 - alpha/2)

# Power = P(reject | H1 true)

power <- pnorm(-z_crit + d * sqrt(n)) +
pnorm(-z_crit - d * sqrt(n))

return(power)

3

# Example: d = 0.3, n = 100
calculate_power(d = 0.3, n = 100) # About 85%
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Power Increases with Effect Size

Power Increases with Effect Size
n=100,.=0.05,.=1

100%

__________________ 8Q%power. _ _ _
75%

50%

Power

25%

0%
0.00 0.25 0.50 0.75
Effect Size (Cohen's d)

With n =100, we need d ~ 0.28 for 80% power.
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Power Curves for Different Effect Sizes

Power Curves for Different Effect Sizes
.=0.05

100%

50%

Power

25%

0%

300

100 200
Sample Size (n)

Effect Size — Small (4=0.2) — Medium (d=0.5) — Large (d=0.8)

Small effects need much larger samples to detect reliably.
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Sample Size for 80% Power

# Find required n for target power
find_sample_size <- function(target_power, d, alpha = 0.05) {
for (n in 5:2000) {
if (calculate_power(d, n, alpha) >= target_power) {
return(n)
3
3
return(NA)

3

# Required n for different effect sizes at 80% power
find_sample_size(0.80, d = 0.2) # Small effect
find_sample_size(0.80, d = 0.5) # Medium effect
find_sample_size(0.80, d = 0.8) # Large effect
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Looking Ahead

Spring Break: March 15-23

Week 8: What s Regression?
® The Best Linear Predictor (BLP)
® OLS as sample BLP
® Connection to CEF

Reading:
® Blackwell Ch. 5
* A&M §2.2.4
® Angrist & Pischke Ch. 3.1

The second half of the course: applying what we’ve learned to regression.
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