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Today’s Reading

Required
• Blackwell, §3.6: The Delta Method
• Aronow & Miller, Review §3.2.5–3.2.6

What we’re doing:
• The delta method: finding the asymptotic distribution of h(𝜃 )
• Why this matters: many quantities of interest are nonlinear functions
• The multivariate delta method: for functions of multiple parameters

Last inference lecture before the midterm!
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The Problem

We know the CLT gives us:

√
n(X̄n − 𝜇) d−→ N (0, 𝜎2)

But what if we want:
• The distribution of log(X̄n)?
• The distribution of X̄ 2

n ?
• The distribution of 1/X̄n?
• The distribution of exp(𝛽) (for odds ratios)?

The question: If 𝜃n is asymptotically normal, what is the asymptotic distribution of
h(𝜃n)?
Answer: The delta method.
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Real Applications

Why do we need nonlinear functions of estimators?

• Risk ratios: p̂1/p̂0 (ratio of two proportions)

• Odds ratios: p̂1/(1−p̂1 )
p̂0/(1−p̂0 )

• Log-transformed variables: CI for 𝜇 when Y = log(X )

• Elasticities: 𝜕 log Y
𝜕 log X =

𝛽 ·X̄
Ȳ

• Marginal effects: 𝜕Pr(Y=1)
𝜕X in probit/logit

• Treatment effects: 𝛽1/𝛽2 (ratio of coefficients)

All of these require knowing the distribution of a function of estimators.
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The Delta Method: Statement

Theorem (Delta Method)

Suppose
√
n(𝜃n − 𝜃 ) d−→ N (0,V ).

If h is continuously differentiable at 𝜃 with h′(𝜃 ) ≠ 0, then:

√
n(h(𝜃n) − h(𝜃 )) d−→ N

(
0, [h′(𝜃 )]2V

)
In words:

• The transformation h(𝜃 ) is also asymptotically normal
• The variance gets multiplied by [h′(𝜃 )]2
• The “spread” depends on how steep h is at 𝜃
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Intuition: Taylor Expansion

The delta method is a first-order Taylor approximation.

Near 𝜃 , any smooth function is approximately linear:

h(𝜃n) ≈ h(𝜃 ) + h′(𝜃 ) (𝜃n − 𝜃 )

Rearranging:
h(𝜃n) − h(𝜃 ) ≈ h′(𝜃 ) (𝜃n − 𝜃 )

Multiply by
√
n: √

n(h(𝜃n) − h(𝜃 )) ≈ h′(𝜃 ) ·
√
n(𝜃n − 𝜃 )

Since
√
n(𝜃n − 𝜃 ) d−→ N (0,V ):

√
n(h(𝜃n) − h(𝜃 )) d−→ h′(𝜃 ) · N (0,V ) = N (0, [h′(𝜃 )]2V )
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Visual Intuition: The Tangent Line

𝜃

h(𝜃 )

𝜃

h(𝜃 )

Tangent: slope = h′ (𝜃 )
Error→ 0h(𝜃 )

Key insight: Near 𝜃 , the curve ≈ the tangent line.
The slope h′(𝜃 ) tells us how sensitive h is to changes in 𝜃 .
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Why the Slope Matters

The variance of h(𝜃 ) is [h′(𝜃 )]2 times the variance of 𝜃 .

Steep slope (|h′(𝜃 ) | large):
• Small changes in 𝜃 ⇒ large changes
in h(𝜃 )

• Higher variance for h(𝜃 )
• Example: h(𝜃 ) = log(𝜃 ) when 𝜃 is
small

Flat slope (|h′(𝜃 ) | small):
• Changes in 𝜃 ⇒ small changes in h(𝜃 )
• Lower variance for h(𝜃 )
• Example: h(𝜃 ) = log(𝜃 ) when 𝜃 is
large

Bottom line: The transformation can amplify or dampen the variance.
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Example 1: Logarithm

Setup: We want a CI for log(𝜇) based on X̄n.

What we know:
√
n(X̄n − 𝜇) d−→ N (0, 𝜎2)

Apply delta method with h(𝜃 ) = log(𝜃 ):
• h′(𝜃 ) = 1/𝜃
• At 𝜃 = 𝜇: h′(𝜇) = 1/𝜇

Result:
√
n(log(X̄n) − log(𝜇)) d−→ N

(
0,
𝜎2

𝜇2

)
Standard error: SE[log(X̄n)] ≈ 𝜎

𝜇
√
n
=

𝜎/
√
n

𝜇

Note: If 𝜇 is small, 1/𝜇 is large⇒ more variance.
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Example 2: Exponential (Odds Ratios)

Setup: In logistic regression, 𝛽 is the log-odds ratio. We want a CI for exp(𝛽) (the odds
ratio).

What we know:
√
n(𝛽 − 𝛽) d−→ N (0,V )

Apply delta method with h(𝜃 ) = exp(𝜃 ):
• h′(𝜃 ) = exp(𝜃 )
• At 𝜃 = 𝛽 : h′(𝛽) = exp(𝛽)

Result: √
n(exp(𝛽) − exp(𝛽)) d−→ N (0, exp(2𝛽) · V )

Standard error: SE[exp(𝛽)] ≈ exp(𝛽) · SE[𝛽]
This is why software reports CIs for odds ratios using the delta method.
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Example 3: Squared Mean

Setup: We want a CI for 𝜇2 based on X̄n.

Apply delta method with h(𝜃 ) = 𝜃 2:
• h′(𝜃 ) = 2𝜃
• At 𝜃 = 𝜇: h′(𝜇) = 2𝜇

Result: √
n(X̄ 2

n − 𝜇2) d−→ N (0, 4𝜇2𝜎2)

Standard error: SE[X̄ 2
n ] ≈

2 |𝜇 |𝜎√
n

Warning: If 𝜇 = 0, then h′(𝜇) = 0 and the delta method breaks down!
Need higher-order terms when h′(𝜃 ) = 0.
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The Multivariate Delta Method

What if h depends on multiple parameters?

Theorem (Multivariate Delta Method)

Suppose
√
n(𝜽 n − 𝜽 ) d−→ N (0, 𝚺) where 𝜽 n, 𝜽 ∈ Rk .

If h : Rk → R is continuously differentiable, then:

√
n(h(𝜽 n) − h(𝜽 )) d−→ N (0,∇h(𝜽 )′𝚺∇h(𝜽 ))

Where ∇h(𝜽 ) =
(
𝜕h
𝜕𝜃1

, . . . , 𝜕h
𝜕𝜃k

) ′
is the gradient.

The variance is ∇h′𝚺∇h—a quadratic form in the covariance matrix.
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Multivariate Example: Ratio of Means

Setup: Two independent samples. Want a CI for 𝜇1/𝜇2.
Let 𝜽 = (𝜇1, 𝜇2)′ and h(𝜽 ) = 𝜇1/𝜇2.
Gradient:

∇h =

(
𝜕h/𝜕𝜇1
𝜕h/𝜕𝜇2

)
=

(
1/𝜇2

−𝜇1/𝜇22

)
Covariance matrix (independent samples):

𝚺 =

(
𝜎2
1/n1 0
0 𝜎2

2/n2

)
Asymptotic variance:

Var

(
X̄1
X̄2

)
≈ 1

𝜇22
·
𝜎2
1

n1
+
𝜇21

𝜇42
·
𝜎2
2

n2
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When the Delta Method Fails

The delta method requires h′(𝜃 ) ≠ 0.

If h′(𝜃 ) = 0:
• The first-order Taylor approximation gives zero variance
• Need to use higher-order terms (second-order delta method)
• The limiting distribution may not be normal

Example: h(𝜃 ) = 𝜃 2 when 𝜃 = 0.
• h′(0) = 0, so delta method gives variance 0

• Actually, n · (X̄ 2
n − 0) d−→ 𝜎2𝜒21 (chi-squared!)

Fortunately, this edge case rarely matters in practice.
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The Delta Method in Practice

You rarely compute this by hand.

Statistical software does it automatically:
• deltamethod() in R’s msm package
• nlcom in Stata
• car::deltaMethod() in R
• Many packages compute it internally (e.g., for odds ratios, marginal effects)

What you need to know:

1. Recognize when delta method applies

2. Understand that variance gets scaled by [h′(𝜃 )]2

3. Know that the result is asymptotically normal

4. Be aware of edge cases (h′(𝜃 ) = 0)
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Alternative: The Bootstrap

The bootstrap is a computational alternative to the delta method.

Delta method:
• Analytical: derive the formula
• Requires h to be differentiable
• Requires asymptotic normality of 𝜃

Bootstrap:
• Computational: resample and compute h(𝜃 ∗) many times
• No differentiability requirement
• More flexible, but slower

In practice: Use delta method when h is simple; use bootstrap for complex h or when
you’re unsure.
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Summary: The Asymptotic Toolkit (Complete)

Tool What It Does

LLN 𝜃n
p
−→ 𝜃 (consistency)

CLT
√
n(𝜃n − 𝜃 ) d−→ N (0,V ) (asymptotic normality)

Slutsky Plug in consistent estimators

CMT Continuous functions preserve convergence

Delta Method h(𝜃n) is asymptotically normal with variance [h′(𝜃 )]2V

This is the complete toolkit for frequentist inference.
Everything in regression will build on these foundations.
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What’s Next: Regression

After the midterm: Part II of the course.

Regression uses everything we’ve learned:

• LLN: 𝛽
p
−→ 𝛽 (OLS is consistent)

• CLT:
√
n(𝛽 − 𝛽) d−→ N (0,V ) (asymptotic normality)

• Slutsky: We can estimate V and plug it in
• Delta method: For nonlinear functions of 𝛽

The inference machinery is complete. Now we apply it to the workhorse of empirical
social science: linear regression.
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Midterm Preparation

The midterm will cover Weeks 1–8.

Key topics:
• Probability fundamentals (Bayes, conditional probability)
• Random variables, expectation, variance
• Joint distributions, covariance, the CEF
• Sampling distributions, LLN, CLT
• Estimation, confidence intervals, hypothesis testing
• Power analysis
• Convergence, Slutsky, delta method

Focus on concepts: What do these tools mean? When do you use them? What are the
assumptions?
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For the Midterm

Review:
• All lecture slides
• Problem sets 1–3
• Blackwell Chapters 2–4
• A&M Chapters 1–3

Office hours:
• Extended office hours before the midterm (see Canvas)
• Come with specific questions

Good luck! The hard part of the course is behind you. Regression is where it all pays off.
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