
Empirical Workflow and Tools
Gov 51: Data Analysis and Politics

Scott Cunningham

Harvard University

Week 1, Thursday
January 29, 2026

Today’s Roadmap

1. The Rhetoric of Quantitative Studies
▷ Why communication matters as much as computation

2. Organizing Your Workflow
▷ Directory structure, naming, code style, and version control

3. Testing Your Code
▷ How to catch errors before they catch you

4. A Real Question: Women in Congress
▷ Applying everything to real political science data

Empirical Workflow and Tools 2 / 74

The Rhetoric of Quantitative Studies

What Is Rhetoric?

Rhetoric is the art of persuasion.

Quantitative research is not just about finding truth—it’s about communicating
truth effectively.

Three elements (from Aristotle):

▷ Ethos: Credibility of the speaker

▷ Pathos: Emotional connection with audience

▷ Logos: Logical structure of the argument

Empirical Workflow and Tools 4 / 74

Why Start Here?

Most courses teach you how to analyze data.

But analysis without communication is useless:

▷ A brilliant finding no one understands changes nothing

▷ A clear, simple result can change policy

▷ Your audience is busy, skeptical, and distracted

Every technical skill we learn this semester serves communication.

Empirical Workflow and Tools 5 / 74

Beautiful Pictures

Good visualizations:

▷ Have one clear message per figure

▷ Remove unnecessary clutter

▷ Use color purposefully

▷ Label axes clearly

▷ Include informative titles

Ask: “What do I want the reader to conclude from this figure?”

Empirical Workflow and Tools 6 / 74

Beautiful Tables

Good tables:

▷ Show precise values that matter

▷ Are organized logically (most important first)

▷ Use consistent formatting and decimal places

▷ Have clear column headers

▷ Don’t overwhelm with too much information

A table should be readable without the surrounding text.

Empirical Workflow and Tools 7 / 74

Beautiful Words

Good writing:

▷ States the main finding clearly and early

▷ Uses simple, precise language

▷ Connects evidence to claims explicitly

▷ Acknowledges limitations honestly

▷ Tells a coherent story

Your reader is busy. Respect their time.

Empirical Workflow and Tools 8 / 74

The Integration

The best quantitative work integrates all three:

1. Words introduce the question and stakes

2. Tables establish the data and basic facts

3. Figures reveal patterns and relationships

4. Words interpret the findings and implications

Each element should reinforce the others, not repeat them.

Today we’ll see this in action with a real example.

Empirical Workflow and Tools 9 / 74

Organizing Your Directories

A Personal Story

When I was 10 years old in 1985, my
mom—who worked at the county tax
assessor’s office—showed me something.

She pulled open a drawer of a big metal
cabinet. Inside: hundreds of folders,
organized by last name, then first name.

“Every piece of paper has a place where it
lives,” she said. “You go to that place to find
it.”

This was cutting-edge information technology
in 1898. And in 1985.

A–F

G–M

N–S

T–Z

Filing cabinet

Empirical Workflow and Tools 11 / 74

The Card Catalog

At the public library, I learned the card
catalog:

▷ Index cards, alphabetized

▷ Each card had a call number:
636.7 / DOG / 1983

▷ That number = where the book lived

To find a book, you navigated TO its
location.

Aa-AmAn-Az Ba-BlBm-Bz

Card catalog

Empirical Workflow and Tools 12 / 74

Then Came Computers

When I got my first PC in 1989, the file system made instant sense:

C:\

GAMES

KINGSQST ZORK

SCHOOL

PAPERS HOMEWORK

WORDPERF

It was just a digital filing cabinet. Folders inside folders. Everything in its place.

The designers at Xerox PARC (1981) modeled it on the physical
office—deliberately.

Empirical Workflow and Tools 13 / 74

But You Grew Up Differently

Most of you were born around 2006–2007.

You grew up with:

▷ Google (search everything)

▷ Smartphones (apps, not files)

▷ Cloud storage (searchable)

You’ve never needed to know where things
live.

You search. The thing appears. Magic.

Search...

⋆ ⋆

Result 1
Result 2
Result 3

Search model

Empirical Workflow and Tools 14 / 74

Two Mental Models

Filing Cabinet

Items live in ONE place.
You navigate TO that place.

Gen X (and your professor)

vs

Laundry Basket
Everything in one pile.
You SEARCH to find it.

file.p
df
img.jpg

data.csvnotes.txt

co
de

.R

Gen Z

Neither is wrong. But coding requires the filing cabinet model.

Empirical Workflow and Tools 15 / 74

Why Coding Requires Hierarchy

The computer can’t search. You have
to tell it exactly where things are.

When you write:

read.csv("data/raw/turnout.csv")

You’re giving directions: “Start here. Go into the data folder. Then into raw.
Find turnout.csv.”

If the file isn’t exactly there, the code breaks. There’s no fuzzy matching. No “did
you mean...?”

This is why we need to learn directory structure—even if it feels foreign.
Empirical Workflow and Tools 16 / 74

The Tree Metaphor

Think of your project as an upside-down tree:

my project/

data/

raw/

turnout.csv

clean/

turnout clean.csv

code/

01 clean.R 02 analysis.R

output/

figure1.png table1.tex

The root is at top. Data, code, and output branch out to files.

Empirical Workflow and Tools 17 / 74

The Gentzkow-Shapiro Rules

Economists Gentzkow and Shapiro wrote the guide to organizing research projects:

1. Raw data is sacred

▷ Never modify original data

▷ Keep it in data/raw/ (read-only)

2. Outputs are disposable

▷ Anything in output/ can be
regenerated

▷ If you lose outputs, run the code
again

3. Use relative paths

▷ "data/raw/turnout.csv" ✓

▷ "C:/Users/Scott/..." Ö

4. One script to rule them all

▷ Master script runs everything

▷ Can you regenerate all results with
one command?

Empirical Workflow and Tools 18 / 74

A Standard Project Structure

my_project/

|-- data/

| |-- raw/ # Original , untouched data (READ ONLY

)

| |-- clean/ # Processed data

|-- code/

| |-- 01_clean.R # Data cleaning

| |-- 02_analysis.R # Main analysis

| |-- 03_figures.R # Visualization

|-- output/

| |-- figures/ # Saved plots (can regenerate)

| |-- tables/ # Saved tables (can regenerate)

|-- README.md # What is this project?

This is the structure you’ll use for every problem set and your final project.
Empirical Workflow and Tools 19 / 74

Working Directories: Two Approaches

R needs to know where your files live. Two options:

Option 1: Set it manually

Check where R thinks you

are

getwd()

Tell R where to look

setwd("/path/to/project")

Problem: You need to know your path.

Option 2: RStudio Projects

▷ Create a .Rproj file

▷ Double-click to open

▷ R automatically knows where you
are

Better: No paths to memorize.

Empirical Workflow and Tools 20 / 74

Finding Your Path (The Manual Way)

If you’ve never navigated a file system, “/path/to/project” means nothing.
Three ways to find it:

Method 1: RStudio’s Files pane (easiest)

▷ Files pane (bottom right) → navigate to your folder → More → Set As
Working Directory

Method 2: Drag and drop (Mac)

▷ Type setwd(" in console, drag folder from Finder, type ")

Method 3: Copy from file browser

▷ Mac: Right-click folder → Get Info → copy “Where” path

▷ Windows: Click address bar in File Explorer → copy path

The problem with all of these: The path is specific to your computer. If you share
your code or move to a different machine, it breaks.

Empirical Workflow and Tools 21 / 74

RStudio Projects: The Easier Way

Instead of hunting for paths, let’s set up a project together:

1. Create your project folder somewhere on your computer
▷ Example: Documents/Gov51/pset1/

2. In RStudio: File → New Project → Existing Directory
▷ Browse to the folder you just created
▷ Click “Create Project”

3. What happens: RStudio creates a .Rproj file in that folder

4. From now on: Double-click the .Rproj file to open your project
▷ RStudio opens with the working directory already set
▷ No setwd() needed—just use relative paths like "data/file.csv"

This also makes your code portable—it works on any computer.

Empirical Workflow and Tools 22 / 74

The Golden Rule

Someone else should be able to run
your code and get the same results.

That “someone else” includes:

▷ Your TF grading your problem set

▷ A collaborator on your project

▷ A harsh critic replicating your study

▷ Future you—who has forgotten everything

Good organization is a gift to your future self.

Empirical Workflow and Tools 23 / 74

Writing Good Code

R Commands You’ll Use Constantly

Before we dive in, here are the R functions you’ll use in nearly every analysis:

Loading and saving:

Read a CSV file

df <- read.csv("file.csv")

Save an R object

save(df, file = "data.RData

")

Load a saved object

load("data.RData")

Exploring data:

Dimensions (rows x cols)

dim(df)

Column names

names(df)

First few rows

head(df)

Empirical Workflow and Tools 25 / 74

The Dollar Sign: Extracting Columns

The $ operator extracts a single column from a data frame:

df$column_name gives you that column as a vector

df$year # All the years

df$income # All the income values

You can do math on columns

df$income / df$population * 100

More useful functions:

summary(df$column) # Min , max , mean , quartiles

range(df$column) # Just min and max

We’ll use all of these in today’s example.

Empirical Workflow and Tools 26 / 74

Naming Things Is Hard

There are only two hard things in Computer Sci-
ence: cache invalidation and naming things.

—Phil Karlton

Good names make code self-documenting. Bad names create confusion, bugs,
and wasted time.

This applies to:

▷ Variables in your code

▷ Files in your project

▷ Folders in your directory

Empirical Workflow and Tools 27 / 74

Variable Naming: The Horror

Which code would you rather debug six months from now?

The Bad

x1 <- df$v2

x2 <- mean(x1, na.rm = T)

y <- x1 / x2

z <- df$v3 * y

What is x1? What is v2? What does any of this do?

You wrote this. You will forget what it means.

Empirical Workflow and Tools 28 / 74

Variable Naming: The Fix

The Good

turnout <- df$votes_cast

avg_turnout <- mean(turnout , na.rm = TRUE)

normalized_turnout <- turnout / avg_turnout

weighted_turnout <- df$population * normalized_turnout

Same logic. Now you can read it.

Your variable names are documentation.

Empirical Workflow and Tools 29 / 74

Variable Naming Rules

Do this:

▷ avg income

▷ turnout 2020

▷ is registered

▷ n observations

Lowercase, underscores, descriptive

Not this:

▷ x1, temp, foo

▷ AvgIncome (hard to read)

▷ avg.income (. has meaning in R)

▷ a (what is a?)

Cryptic, inconsistent, meaningless

The test: Can someone unfamiliar with your project understand what the variable
contains?

Empirical Workflow and Tools 30 / 74

File Naming: The Other Horror

analysis v2 FINAL.R data 05052025 temp1.csv

stuff.R analysis REALFINAL.R

untitled3.R Copy of analysis (2).R

01 clean data.R turnout raw.csv

02 analyze.R turnout clean.csv

03 visualize.R figure turnout.png

Empirical Workflow and Tools 31 / 74

File Naming Rules

For scripts:

▷ Number them: 01 , 02 , 03

▷ Verb + noun: clean data.R

▷ Lowercase, underscores

For data:

▷ What it contains: turnout.csv

▷ Stage: turnout raw.csv,
turnout clean.csv

Never:

▷ Spaces in names

▷ Dates in names (use Git!)

▷ final, v2, REAL

▷ temp, stuff, misc

▷ Copy of...

If you need versions, that’s what Git is
for.

Empirical Workflow and Tools 32 / 74

Scripts, Not Clicking

If you did it by clicking, you can’t reproduce it.

Don’t:

▷ Edit data in Excel

▷ Sort/filter in the viewer

▷ Copy-paste results into Word

▷ Manually rename columns

Do:

▷ Write code that transforms data

▷ Save figures with ggsave()

▷ Generate tables programmatically

▷ Document every step in scripts

Manual steps are invisible. Code is documentation.

Empirical Workflow and Tools 33 / 74

Automating Figures

Don’t screenshot your plots. Save them with code:

Create the plot

turnout_plot <- ggplot(df , aes(x = year , y = turnout)) +

geom_line() +

labs(title = "Voter Turnout Over Time")

Save it to your output folder

ggsave("output/figures/turnout_trend.png",

plot = turnout_plot ,

width = 8, height = 5)

Now when you update your data or analysis, just re-run the script. The figure
updates automatically.

Empirical Workflow and Tools 34 / 74

Automating Tables

Don’t type regression results by hand. Generate them:

library(modelsummary)

model1 <- lm(turnout ~ income , data = df)

model2 <- lm(turnout ~ income + education , data = df)

Save to Word (easy to share)

modelsummary(list(model1 , model2),

output = "output/tables/regression.docx")

No typos. Updates automatically. Reproducible by anyone.

We’ll learn more about reproducible documents later in the course.

Empirical Workflow and Tools 35 / 74

Remember the Tree

my project/

code/

01 clean.R 02 analyze.R

output/

women.png table.docx

Good names Automated

Good names in code/ → automated output in output/

Empirical Workflow and Tools 36 / 74

Organize your files. Name things
clearly. Automate your output.

Now let’s learn how to
save your work properly.

Version Control with Git and GitHub

The Problem

Have you ever had files like this?

▷ paper draft.docx

▷ paper draft v2.docx

▷ paper draft final.docx

▷ paper draft final REAL.docx

▷ paper draft final REAL v2.docx

This is extremely common. It creates major problems: Which is the real final?
What changed between versions? What if you need to undo something from two
weeks ago?

Git solves all of this.

Empirical Workflow and Tools 39 / 74

A Brief History

Linus Torvalds created Git in 2005.

▷ Same person who created Linux (the operating system)

▷ Built Git to manage Linux development (thousands of contributors)

▷ Named it “Git” (British slang for “unpleasant person”)—self-deprecating
humor

GitHub was founded in 2008; acquired by Microsoft in 2018 for $7.5 billion.

Today, virtually all software development uses Git. It’s the industry standard.

Empirical Workflow and Tools 40 / 74

What Is Git?

Git is a version control system:

▷ Tracks every change you make

▷ Lets you go back to any previous
version

▷ Shows exactly what changed and
when

▷ Works on any type of file

Git runs locally on your computer.

GitHub hosts Git repositories:

▷ Backup your work in the cloud

▷ Collaborate with others

▷ Share your code publicly

▷ Build a portfolio

GitHub is a cloud service.

Empirical Workflow and Tools 41 / 74

Local and Cloud: Two Copies

Your Computer
(local)

git add, git commit

GitHub
(cloud)

backup, share, collaborate

git push

git pull

▷ Push: Send your changes to GitHub

▷ Pull: Get changes from GitHub (e.g., if collaborating)

Think of it like Dropbox or iCloud, but you control exactly when things
sync—and you get a complete history of every change.

Empirical Workflow and Tools 42 / 74

Getting Started: Create a GitHub Account

Before Problem Set 1, you need to set up Git. It’s okay to use ChatGPT or
another LLM to help you through these steps!

1. Go to github.com and create a free account
▷ Use your Harvard email for student benefits
▷ Pick a professional username (you’ll use this forever)

2. Install Git on your computer
▷ Mac: Already installed (check with git --version in Terminal)
▷ Windows: Download from git-scm.com

3. Connect RStudio to GitHub
▷ In RStudio: Tools → Global Options → Git/SVN
▷ Search “Happy Git with R” online for detailed walkthrough

Empirical Workflow and Tools 43 / 74

Where to Put Your Projects

Important: Do NOT put Git projects in cloud-synced folders!

Avoid these locations:

▷ Dropbox

▷ iCloud Drive

▷ OneDrive

▷ Google Drive

Cloud sync + Git = conflicts and

corruption

Do this instead:

▷ Create a Projects/ folder

▷ Put it somewhere local:
▷ Mac: ~/Projects/
▷ Windows: C:\Users\You\Projects

▷ All Gov 51 work goes here

One folder, one place, no cloud sync. Your future self will thank you.

Empirical Workflow and Tools 44 / 74

The Basic Workflow

Edit files
Stage

(git add)
Commit

(git commit)
Push

(git push)

1. Edit: Make changes to your files

2. Stage: Select which changes to save

3. Commit: Save a snapshot with a
message

4. Push: Upload to GitHub

Empirical Workflow and Tools 45 / 74

Enabling Git in RStudio (One-Time Setup)

Step 1: Make sure Git is installed

▷ You did this during software setup (or will in section)

Step 2: Tell RStudio where Git lives

▷ Tools → Global Options → Git/SVN

▷ Browse to your Git executable (RStudio usually finds it automatically)

▷ Restart RStudio

Step 3: Enable Git for your project

▷ Tools → Project Options → Git/SVN

▷ Change “Version control system” from (None) to Git

▷ Click OK, restart RStudio

Now the Git tab will appear in your upper-right pane!

Empirical Workflow and Tools 46 / 74

Using the Git Pane

Good news: Once set up, it’s all point-and-click.

The Git pane (upper-right, next to Environment):

1. Check boxes next to files you want to save (“staging”)

2. Click Commit button

3. Write a short message describing what you did

4. Click Commit in the dialog

5. Click Push (green up arrow) to upload to GitHub

That’s it! No Terminal needed.

Troubleshooting: If Git pane doesn’t appear, try running usethis::use git() in the R console.

Empirical Workflow and Tools 47 / 74

Why Bother?

1. Safety: Never lose work again

2. History: See exactly what changed
and when

3. Collaboration: Work with others
without conflicts

4. Portfolio: GitHub is your coding
resume

Every data scientist uses Git. You should too.

Empirical Workflow and Tools 48 / 74

Testing Your Code

A Critical Distinction

Debugging
Your code won’t run.

▷ Syntax errors

▷ Missing files

▷ Typos in variable names

R tells you something is wrong.

Testing
Your code runs, but is it correct?

▷ Wrong calculations

▷ Data entry errors

▷ Logic mistakes

R has no idea anything is wrong.

Code that runs is not necessarily code that works.

Empirical Workflow and Tools 50 / 74

Don’t Trust Your Future Self

You (now) You (in 3 months)

“I’ll remember what
this code does”

“What is this? Who
wrote this garbage?”

Two principles (from LJ Ristovska):

1. Make things easier for your future self

2. Don’t trust your future self

Empirical Workflow and Tools 51 / 74

The Testing Workflow

After every major step, check your work:

How big is my data?

dim(data) # rows x columns

What does it look like?

head(data) # first 6 rows

Any weird values?

summary(data$variable)

Does my calculation make sense?

range(my_result) # min and max

If something looks wrong, you want to know NOW—not after 500 more lines of
code.

Empirical Workflow and Tools 52 / 74

Let’s see testing in action with real data.

A Real Question: Women in Congress

What We’re About To Do

We’re going to work through a complete data analysis workflow—from raw
data to polished figure.

Load Check Compute Visualize Problem! Fix

What you’ll practice:

▷ R functions: read.csv(), dim(), head(), range(), ggplot()

▷ The eyeball test—visualizing data to catch errors

▷ Data skepticism—never trust data until you’ve checked it

▷ Verification—finding authoritative sources when something’s wrong

Spoiler: There’s an error in this data. Can you find it?

Empirical Workflow and Tools 55 / 74

Get Set Up (Do This Now)

Step 1: Create a folder for this exercise

▷ Somewhere sensible: Documents/Gov51/women congress/

Step 2: Download the R script from the course website

▷ Go to: scunning1975.github.io/gov51.html

▷ Week 1 → “R Script” → Save to your folder

Step 3: Create an RStudio Project

▷ File → New Project → Existing Directory

▷ Browse to your folder → Create Project

Step 4: Open the script

▷ File → Open File → women congress.R

We’ll run through it together—line by line.
Empirical Workflow and Tools 56 / 74

The Question

How has women’s representation in Congress changed over time?

In 1917, Jeannette Rankin became the first woman elected to Congress.

Today, there are about 150 women in Congress—but is that a lot?

Data source: Center for American Women and Politics (CAWP), Rutgers
University

Empirical Workflow and Tools 57 / 74

Loading the Data

Load data directly from the web

url <- "https://raw.githubusercontent.com/scunning1975/

scunning1975.github.io/master/files/gov51/

data/women_congress_raw.csv"

congress <- read.csv(url)

What do we have?

dim(congress)

[1] 54 8

names(congress)

[1] "year" "congress" "women_house" "women_senate"

[5] "total_house" "total_senate" ...

54 Congresses (1917–2024), 8 variables.
Empirical Workflow and Tools 58 / 74

First Check: What Does It Look Like?

head(congress , 4)

year congress women_house women_senate total_house

1 1917 65 1 0 435

2 1920 66 0 0 435

3 1922 67 1 1 435

4 1924 68 1 0 435

Quick sanity checks:

▷ Years look right (1917 onwards) ✓

▷ Small numbers of women early on (makes historical sense) ✓

▷ Total House seats = 435 ✓

Empirical Workflow and Tools 59 / 74

Computing Representation

Let’s calculate the percentage of women in the House:

Percent women in House

congress$pct_women <- congress$women_house /

congress$total_house * 100

Quick check

range(congress$pct_women)

[1] 0.00000 66.66667

Hmm, 67% seems high. Let’s visualize it to see the trend...

Empirical Workflow and Tools 60 / 74

Let’s Plot It

library(ggplot2)

ggplot(congress , aes(x = year , y = pct_women)) +

geom_line(color = "steelblue", linewidth = 1) +

geom_point(color = "steelblue") +

labs(x = "Year", y = "Women (%)",

title = "Women in the U.S. House")

Empirical Workflow and Tools 61 / 74

Wait... What’s That?

That spike is clearly wrong.
Empirical Workflow and Tools 62 / 74

Finding the Problem

The visualization showed us something is wrong. Now let’s find it:

Which row has the maximum?

which.max(congress$pct_women)

[1] 38

Look at that row

congress [38, c("year", "women_house", "total_house")]

year women_house total_house

38 1992 290 435

290 women in the House in 1992?

That’s impossible—there are only 435 seats total!

We found an error. But what’s the true value?

Empirical Workflow and Tools 63 / 74

Garbage In, Garbage Out

Bad Data
Your Analysis
(even if perfect) Bad Results

We can’t just guess the fix. Dropping a zero might be right, but:

▷ What if it was 47, not 29?

▷ What if multiple values are wrong?

▷ What if the entire column has the wrong units?

The rule: When you find an error, verify against an authoritative source.

Empirical Workflow and Tools 64 / 74

Fixing the Error (The Right Way)

Step 1: Find an authoritative source

▷ Center for American Women and Politics (CAWP) at Rutgers reports: 29
women in the 103rd Congress (1993-1995)

Step 2: Make the correction (or use NA if you can’t verify)

Verified: CAWP reports 29 women in 1992

congress$women_house [38] <- 29

Recalculate and check

congress$pct_women <- congress$women_house /

congress$total_house * 100

range(congress$pct_women)

[1] 0.000000 28.735632

Now we have a correction we can justify, not just a guess.
Empirical Workflow and Tools 65 / 74

The Reveal

I planted that error in the data.

Why? Because this happens all the time with real data:

▷ Typos in data entry (290 vs 29)

▷ Units that don’t match (thousands vs. actual)

▷ Missing values coded as 999 or -1

▷ Copy-paste errors, OCR mistakes, merging gone wrong

Without visualizing first, you might never notice.

The eyeball test—looking at your data with plots and summaries—catches errors
that code alone cannot.

Empirical Workflow and Tools 66 / 74

Now We Can Trust Our Data

Slow growth for decades, then acceleration starting in the 1990s.
Empirical Workflow and Tools 67 / 74

Comparing House and Senate

Add Senate percentage

congress$pct_senate <- congress$women_senate /

congress$total_senate * 100

Plot both chambers

ggplot(congress , aes(x = year)) +

geom_line(aes(y = pct_women , color = "House")) +

geom_line(aes(y = pct_senate , color = "Senate")) +

labs(x = "Year", y = "Women (%)",

title = "Women in Congress by Chamber",

color = "Chamber")

Empirical Workflow and Tools 68 / 74

House vs. Senate

The Senate lagged behind the House until recently.
Empirical Workflow and Tools 69 / 74

Connecting to Rhetoric

Remember: beautiful pictures have one clear message.

What’s the message of the previous figure?

▷ Not: “Here is data about women in Congress”

▷ But: “Women’s representation accelerated in the 1990s and the Senate has
caught up to the House”

Every figure you make should answer: “So what?”

Empirical Workflow and Tools 70 / 74

Saving Your Figure

Don’t screenshot. Save with code:

Create the plot

women_plot <- ggplot(congress , aes(x = year , y = pct_women))

+

geom_line(color = "steelblue") +

labs(title = "Women in the House")

Save it

ggsave("output/figures/women_congress.png",

plot = women_plot ,

width = 8, height = 5)

Now when you update your analysis, just re-run the script.

Empirical Workflow and Tools 71 / 74

Code that runs is not the
same as code that works.
Always test your results.

What You Learned Today

The workflow:

▷ Organize your project

▷ Load and check your data

▷ Test every major step

▷ Visualize and communicate

The tools:

▷ RStudio Projects for organization

▷ dim(), head(), range() for testing

▷ ggplot2 for visualization

▷ Git/GitHub for version control

These are the practical skills you’ll use all semester.

Empirical Workflow and Tools 73 / 74

Looking Ahead

Problem Set 1:

▷ Look for announcement—will be posted soon

▷ Due Wednesday, February 12 at 11:59pm

▷ Submit via Gradescope

Next Tuesday: Statistics Review (with George)

Reading: QSS Chapter 1 (finish)

Optional resource: Kyle Butts, Introductory R Workbook
https://introductory-r-workbook.netlify.app

Empirical Workflow and Tools 74 / 74

https://introductory-r-workbook.netlify.app

Questions?

Scott: Tue/Thu 3–5pm | George: Thu 2–3pm, K455 | CA: Harrison Huang

